Open Net Zero logo

Filters

Formats:
Select...
Licenses:
Select...
Organizations:
Select...
Tags:
Select...
Shared:
Sensitivities:
Datasets
L o a d i n g
Annual Count of Summer Days - ProjectionsSource

Annual Count of Summer Days (annual number of days where the maximum daily temperature is above 25°C), projections for a range of future warming levels from UKCP18. Provided on a 12km BNG grid.Summer days is a measure of the health impact from high temperatures and heatwaves - it is based on temperature thresholds which, when exceeded, can pose risks to human health and wellbeing. Summer Days are shown to increase everywhere throughout the UK. There is a higher frequency in the South of the UK, and this is projected to increase considerably with global warming. Tropical Nights is another metric measuring health impacts of high temperatures.This data contains a field for each warming level. They are named 'Summer Days', the warming level, and 'upper' 'median' or 'lower' as per the description below. E.g. 'Summer Days 2.5 median' is the median value for the 2.5°C projection. Decimal points are included in field aliases but not field names e.g. 'Summer Days 2.5 median' is 'SummerDays_25_median'. Data defaults to displaying 'Summer Days 2.0°C median' values, use 'change style' to display other values.The warming levels used are 1.5°C, 2.0°C, 2.5°C, 3.0°C, 4.0°C, and two baselines are also provided for 1981-2000 (corresponding to 0.51°C warming) and 2000-2017 (corresponding to 0.835°C warming).What is the data?The data is from the UKCP18 regional projections using the RCP8.5 scenario. Rather than giving projections for a specific date under different scenarios, one scenario is used and projections are given at the different warming levels. So this data shows the expected number of Summer Days should these warming levels be reached, at the time that the warming level is reached.For full details, see 'Future Changes to high impact weather in the UK'. HM Hanlon, D Bernie, G Carigi and JA Lowe. Climatic Change, 166, 50 (2021) https://doi.org/10.1007/s10584-021-03100-5What do the 'median', 'upper', and 'lower' values mean?This scenario is run as 12 separate ensemble members. To select which ensemble members to use, a single value was taken from each ensemble member - the mean of a 21yr period centred on the year the warming level was reached. They were then ranked in order from lowest to highest.The 'lower' fields are the second lowest ranked ensemble member.The 'higher' fields are the second highest ranked ensemble member.The 'median' fields are the median average of all ensemble members.This gives a median average value, and a spread of the ensemble members indicating the level of uncertainty in the projections.This dataset forms part of the Met Office’s Climate Data Portal service. This service is currently in Beta. We would like your help to further develop our service, please send us feedback via the site - https://climate-themetoffice.hub.arcgis.com/

0
No licence known
Tags:
Met OfficeUKUKCPUKCP18annualclimatecountdaysprojectionssummersummer daystemperature
Formats:
HTMLArcGIS GeoServices REST APICSVGeoJSONZIPKML
Met Officeover 1 year ago
Annual Count of Summer Days 1991-2020Source

Annual number of summer days (days where maximum temperature exceeds 25C) averaged over 1991-2020, provided on a 2km BNG grid.This data contains a field for the average over the period, named 'Summer Days'.Data source:HadUK-Grid v1.1.0.0 (downloaded 11/03/2022)More about HadUK-Grid - https://www.metoffice.gov.uk/research/climate/maps-and-data/data/haduk-grid/haduk-grid This dataset forms part of the Met Office’s Climate Data Portal service. This service is currently in Beta. We would like your help to further develop our service, please send us feedback via the site - https://climate-themetoffice.hub.arcgis.com/

0
No licence known
Tags:
1991-202025CAverageHadUKMet OfficeUKannualclimatedaysmaximumsummertemperature
Formats:
HTMLArcGIS GeoServices REST APICSVGeoJSONZIPKML
Met Officeover 1 year ago
Dry Days (Map Service)Source

Date of freeze for historical (1985-2005) and future (2071-2090, RCP 8.5) time periods, and absolute change between them, based on analysis of MACAv2METDATA. Average historical temperature change, between 1948-1968 and 1996-2016 averages, in Celsius. Calculated using averages of minimum and maximum monthly values during these time periods. Values are based on TopoWx data. Download this data or get more information

0
No licence known
Tags:
OSCOffice of Sustainability and ClimateOpen DataUSDA Forest ServiceUSFSclimateclimate changedroughtdry daysprecipitationsummer
Formats:
HTMLArcGIS GeoServices REST API
United States Department of Agriculture10 months ago
GRC 2019 Initial Results PresentationSource

The Report is being developed by NREL and the GRC, with financial support from the Geothermal Technologies Office of the U.S. DOE and the GRC. It is intended to provide geothermal policymakers, regulators, developers, researchers, and other stakeholders with up-to-date information reflecting the 2019 geothermal power production and district heating markets in the United States. It will also present analysis of the current state of the U.S. geothermal industry and markets for both the power production and district heating sectors, with special consideration of developing power projects. In addition, the report will evaluate the impact of state and federal policy, present current research on geothermal development, and offer a future outlook for the U.S. geothermal industry. Data for the 2020 report have been compiled from previous GEA reports, the U.S. Energy Information Association, and from a GRC industry survey conducted in 2020 via a questionnaire sent to all known companies operating U.S. geothermal power plants or with projects in development. This presentation is a summary of the U.S. power production and developing project data collected for the 2020 report.

0
No licence known
Tags:
GRCGeothermal Resources CouncilGeothermal Risingbinarydistrict heatingdouble flashdry steamenergygeothermalmean net generationnameplatenet capacitynet generationpowerpower productionpower purchase agreementsingle flashsummertriple flashwinter
Formats:
PPTX
National Renewable Energy Laboratory (NREL)over 1 year ago
Summer Average Temperature Change - Projections (12km)Source

What does the data show? This dataset shows the change in summer average temperature for a range of global warming levels, including the recent past (2001-2020), compared to the 1981-2000 baseline period. Here, summer is defined as June-July-August. Note, as the values in this dataset are averaged over a season they do not represent possible extreme conditions.The dataset uses projections of daily average air temperature from UKCP18 which are averaged over the summer period to give values for the 1981-2000 baseline, the recent past (2001-2020) and global warming levels. The warming levels available are 1.5°C, 2.0°C, 2.5°C, 3.0°C and 4.0°C above the pre-industrial (1850-1900) period. The recent past value and global warming level values are stated as a change (in °C) relative to the 1981-2000 value. This enables users to compare summer average temperature trends for the different periods. In addition to the change values, values for the 1981-2000 baseline (corresponding to 0.51°C warming) and recent past (2001-2020, corresponding to 0.87°C warming) are also provided. This is summarised in the table below.PeriodDescription1981-2000 baselineAverage temperature (°C) for the period2001-2020 (recent past)Average temperature (°C) for the period2001-2020 (recent past) changeTemperature change (°C) relative to 1981-20001.5°C global warming level changeTemperature change (°C) relative to 1981-20002°C global warming level changeTemperature change (°C) relative to 1981-20002.5°C global warming level changeTemperature change (°C) relative to 1981-20003°C global warming level changeTemperature change (°C) relative to 1981-20004°C global warming level changeTemperature change (°C) relative to 1981-2000What is a global warming level?The Summer Average Temperature Change is calculated from the UKCP18 regional climate projections using the high emissions scenario (RCP 8.5) where greenhouse gas emissions continue to grow. Instead of considering future climate change during specific time periods (e.g. decades) for this scenario, the dataset is calculated at various levels of global warming relative to the pre-industrial (1850-1900) period. The world has already warmed by around 1.1°C (between 1850–1900 and 2011–2020), whilst this dataset allows for the exploration of greater levels of warming.  The global warming levels available in this dataset are 1.5°C, 2°C, 2.5°C, 3°C and 4°C. The data at each warming level was calculated using a 21 year period. These 21 year periods are calculated by taking 10 years either side of the first year at which the global warming level is reached. This time will be different for different model ensemble members. To calculate the value for the Summer Average Temperature Change, an average is taken across the 21 year period.We cannot provide a precise likelihood for particular emission scenarios being followed in the real world future. However, we do note that RCP8.5 corresponds to emissions considerably above those expected with current international policy agreements. The results are also expressed for several global warming levels because we do not yet know which level will be reached in the real climate as it will depend on future greenhouse emission choices and the sensitivity of the climate system, which is uncertain. Estimates based on the assumption of current international agreements on greenhouse gas emissions suggest a median warming level in the region of 2.4-2.8°C, but it could either be higher or lower than this level.What are the naming conventions and how do I explore the data?These data contain a field for each warming level and the 1981-2000 baseline. They are named 'tas summer change' (change in air 'temperature at surface'), the warming level or baseline, and 'upper' 'median' or 'lower' as per the description below. e.g. 'tas summer change 2.0 median' is the median value for summer for the 2.0°C warming level. Decimal points are included in field aliases but not in field names, e.g. 'tas summer change 2.0 median' is named 'tas_summer_change_20_median'.  To understand how to explore the data, refer to the New Users ESRI Storymap. Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘tas summer change 2.0°C median’ values.What do the 'median', 'upper', and 'lower' values mean?Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future.For this dataset, the model projections consist of 12 separate ensemble members. To select which ensemble members to use, the Summer Average Temperature Change was calculated for each ensemble member and they were then ranked in order from lowest to highest for each location.The ‘lower’ fields are the second lowest ranked ensemble member. The ‘higher’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and higher fields, the greater the uncertainty.‘Lower’, ‘median’ and ‘upper’ are also given for the baseline period as these values also come from the model that was used to produce the projections. This allows a fair comparison between the model projections and recent past.  Useful linksFor further information on the UK Climate Projections (UKCP).Further information on understanding climate data within the Met Office Climate Data Portal.

0
No licence known
Tags:
12kmClimateMet OfficeProjectionsTemperatureUKUK projections temperatureUK warming levels changeUKCPaveragechangesummer
Formats:
HTMLArcGIS GeoServices REST APICSVGeoJSONZIPKML
Met Office5 months ago
Summer Maximum Temperature Change - Projections (12km)Source

What does the data show? This dataset shows the change in summer maximum air temperature for a range of global warming levels, including the recent past (2001-2020), compared to the 1981-2000 baseline period. Here, summer is defined as June-July-August. The dataset uses projections of daily maximum air temperature from UKCP18. For each year, the highest daily maximum temperature from the summer period is found. These are then averaged to give values for the 1981-2000 baseline, recent past (2001-2020) and global warming levels. The warming levels available are 1.5°C, 2.0°C, 2.5°C, 3.0°C and 4.0°C above the pre-industrial (1850-1900) period. The recent past value and global warming level values are stated as a change (in °C) relative to the 1981-2000 value. This enables users to compare summer maximum temperature trends for the different periods. In addition to the change values, values for the 1981-2000 baseline (corresponding to 0.51°C warming) and recent past (2001-2020, corresponding to 0.87°C warming) are also provided. This is summarised in the table below.PeriodDescription1981-2000 baselineAverage temperature (°C) for the period2001-2020 (recent past)Average temperature (°C) for the period2001-2020 (recent past) changeTemperature change (°C) relative to 1981-20001.5°C global warming level changeTemperature change (°C) relative to 1981-20002°C global warming level changeTemperature change (°C) relative to 1981-20002.5°C global warming level changeTemperature change (°C) relative to 1981-20003°C global warming level changeTemperature change (°C) relative to 1981-20004°C global warming level changeTemperature change (°C) relative to 1981-2000What is a global warming level?The Summer Maximum Temperature Change is calculated from the UKCP18 regional climate projections using the high emissions scenario (RCP 8.5) where greenhouse gas emissions continue to grow. Instead of considering future climate change during specific time periods (e.g. decades) for this scenario, the dataset is calculated at various levels of global warming relative to the pre-industrial (1850-1900) period. The world has already warmed by around 1.1°C (between 1850–1900 and 2011–2020), whilst this dataset allows for the exploration of greater levels of warming.  The global warming levels available in this dataset are 1.5°C, 2°C, 2.5°C, 3°C and 4°C. The data at each warming level was calculated using a 21 year period. These 21 year periods are calculated by taking 10 years either side of the first year at which the global warming level is reached. This time will be different for different model ensemble members. To calculate the value for the Summer Maximum Temperature Change an average is taken across the 21 year period.We cannot provide a precise likelihood for particular emission scenarios being followed in the real world future. However, we do note that RCP8.5 corresponds to emissions considerably above those expected with current international policy agreements. The results are also expressed for several global warming levels because we do not yet know which level will be reached in the real climate as it will depend on future greenhouse emission choices and the sensitivity of the climate system, which is uncertain. Estimates based on the assumption of current international agreements on greenhouse gas emissions suggest a median warming level in the region of 2.4-2.8°C, but it could either be higher or lower than this level.What are the naming conventions and how do I explore the data?These data contain a field for each warming level and the 1981-2000 baseline. They are named 'tasmax summer change' (change in air 'temperature at surface'), the warming level or baseline, and 'upper' 'median' or 'lower' as per the description below. e.g. 'tasmax summer change 2.0 median' is the median value for summer for the 2.0°C warming level. Decimal points are included in field aliases but not in field names, e.g. 'tasmax summer change 2.0 median' is named 'tasmax_summer_change_20_median'. To understand how to explore the data, refer to the New Users ESRI Storymap. Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘tasmax summer change 2.0°C median’ values.What do the 'median', 'upper', and 'lower' values mean?Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future.For this dataset, the model projections consist of 12 separate ensemble members. To select which ensemble members to use, the Summer Maximum Temperature Change was calculated for each ensemble member and they were then ranked in order from lowest to highest for each location.The ‘lower’ fields are the second lowest ranked ensemble member. The ‘higher’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and higher fields, the greater the uncertainty.‘Lower’, ‘median’ and ‘upper’ are also given for the baseline period as these values also come from the model that was used to produce the projections. This allows a fair comparison between the model projections and recent past.  Useful linksFor further information on the UK Climate Projections (UKCP).Further information on understanding climate data within the Met Office Climate Data Portal.

0
No licence known
Tags:
12kmClimateMet OfficeProjectionsTemperatureUKUK projections temperatureUK warming levels changeUKCPchangemaxmaximumsummer
Formats:
HTMLArcGIS GeoServices REST APICSVGeoJSONZIPKML
Met Office5 months ago