Open Net Zero logo

Filters

Formats:
Select...
Licenses:
Select...
Organizations:
Select...
Tags:
Select...
Shared:
Sensitivities:
Datasets
L o a d i n g
ASRU Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network in Sidney, Montana

Information is needed to mitigate dryland soil greenhouse gas (GHG) emissions by using novel management practices. We evaluated the effects of cropping sequence and N fertilization on dryland soil temperature and water content at the 0- to 15-cm depth and surface CO2, N2O, and CH4 fluxes in a Williams loam in eastern Montana. Treatments were no-tilled continuous malt barley (Hordeum vulgaris L.) (NTCB), no-tilled malt barley-pea (Pisum sativum L.) (NTB-P), and conventional-tilled malt barley-fallow (CTB-F) (control), each with 0 and 80 kg N ha-1. Gas fluxes were measured at 3 to 14 d intervals using static, vented chambers from March to November, 2008 to 2011. Soil temperature varied but water content was greater in CTB-F than in other treatments. The GHG fluxes varied with date of sampling, peaking immediately after substantial precipitation (>15 mm) and N fertilization during increased soil temperature. Total CO2 flux from March to November was greater in NTCB and NTB-P with 80 kg N ha-1 than in other treatments from 2008 to 2010. Total N2O flux was greater in NTCB with 0 kg N ha-1 and in NTB-P with 80 kg N ha-1 than in other treatments in 2008 and 2011. Total CH4 uptake was greater with 80 than with 0 kg N ha-1 in NTCB in 2009 and 2011. Because of intermediate level of CO2 equivalent of GHG emissions and known favorable effect on malt barley yield, NTB-P with 0 kg N ha-1 might mitigate GHG emissions and sustain crop yields compared to other treatments in eastern Montana. For accounting global warming potential of management practices, however, additional information on soil C dynamics and CO2 associated with production inputs and machinery use are needed.

0
No licence known
Tags:
EnvironmentNP211NP212Soil Temperaturecrop managementfarminggreenhouse gas emissionstillageyield
Formats:
HTML
United States Department of Agriculture10 months ago
Carbon Crops Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network and Resilient Economic Agricultural Practices in Morris, Minnesota

Carbon Crops Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network and Resilient Economic Agricultural Practices in Morris, Minnesota The overall goal of the Carbon Crop study, established in 2000, was to assess strategies for increasing soil C sequestration including converting to no till systems and including perennial grasses (e.g., switchgrass and big bluestem) Overall, the goal of the study has remained constant, although individual treatments were changed after an incremental soil sampling, in response to new hypotheses and questions. Soil sampling is conducted as treatment changes are implemented. In 2012, two of the perennial grass systems (spring harvest of Switchgrass and Big Bluestem) were changed to corn/soybean rotations, beginning with a soybean entry point, to determine if the SOC accrued under the perennial system was lost by converting to a short annual rotation managed without tillage. The second change made was to compare the productivity between recent and traditional switchgrass cultivars. The final change was conversion of autumn harvest of Big Bluestem treatment replaced with an annual biomass crop – Sorghum-Sudan grass. Soil samples were taken to 1 m in 2000, 2006, 2011, and 2016. Nitrous oxide and carbon dioxide fluxes from the soil were measured from June 2009 through March 2012.

0
No licence known
Tags:
Andropogon gerardiiEnvironmentGRACEnetMorris MN CCNP211NP212Natural Resources and GenomicsPanicum virgatumREAPSoilSorghum bicolor subsp. drummondiiautumncarboncarbon dioxidecarbon nitrogen ratiocarbon sequestrationclaycultivarsenergy cropsexperimental designfarminggrassesgrowing seasonharvestinglakesnitrous oxideno-tillageon-farm researchoutreachpHperennialssnowsoil conservationsoil organic carbonsoil samplingsoybeansspringtemperaturetillagewinter
Formats:
HTML
United States Department of Agriculture10 months ago
Data from: Benzoxazinoids in roots and shoots of cereal rye (Secale cereale) and their fates in soil after cover crop termination

Cover crops provide many agroecosystem services, including weed suppression, which is partially exerted through release of allelopathic benzoxazinoid (BX) compounds. This research characterizes (1) changes in concentrations of BX compounds in shoots, roots, and soil at three growth stages (GS) of cereal rye (Secale cereale L.), and (2) their degradation over time following termination. Concentrations of shoot dominant BX compounds, DIBOA-glc and DIBOA, were least at GS 83 (boot). The root dominant BX compound, HMBOA-glc, concentration was least at GS 54 (elongation). Rhizosphere soil BX concentrations were 1000 times smaller than in root tissues. Dominant compounds in soil were HMBOA-glc and HMBOA. Concentrations of BX compounds were similar for soil near root crowns and between-rows. Soil BX concentrations following cereal rye termination declined exponentially over time in three of four treatments: incorporated shoots (S) and roots (R), no-till S+R (cereal rye rolled flat), and no-till R (shoots removed), but not in no-till S. On the day following cereal rye termination, soil concentrations of HMBOA-glc and HMBOA in these three treatments increased above initial concentrations. Concentrations of these two compounds decreased the fastest while DIBOA-glc declined the slowest (half-life of 4 d in no-till S+R soil). Placement of shoots on the surface of an area where cereal rye had not grown (no-till S) did not increase soil concentrations of BX compounds. The short duration and complex dynamics of BX compounds in soil prior to and following termination illustrate the limited window for enhancing weed suppression by cereal rye allelochemicals; valuable information for programs breeding for enhanced weed suppression. In addition to the data analyzed for this article, we also include the R code.

0
No licence known
Tags:
NP304Soilbenzoxyazenoidscereal ryecover cropsexudatestillage
Formats:
CSVRTXT
United States Department of Agriculture10 months ago
Data from: Immediate and delayed movement of resistant and susceptible adults of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) after short exposures to phosphine

The aim of the current study was to track the movement of phosphine-resistant and -susceptible adults of the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), which is a major pest of stored products, after brief exposures to phosphine. Exposures were followed for extended intervals to assess the recovery patterns, and how those patterns are related to known resistance to phosphine. A video-tracking procedure coupled with Ethovision software was used to assess movement after exposure. Two strains of T. castaneum were used, one susceptible and one resistant to phosphine. The susceptible T. castaneum strain had been maintained in continuous culture without any known exposure to phosphine for >30 years at the USDA-ARS Center for Grain and Animal Health Research (CGAHR), in Manhattan, KS, USA. The phosphine-resistant strain of T. castaneum was collected from wheat in Palmital, Brazil during 1988 (BRZ-5). The rearing media consisted of 95% organic, unbleached, wheat flour plus 5% brewer's yeast. Tribolium castaneum were reared under laboratory conditions of 27.5°C, and 65% relative humidity (R.H.), 14:10 L:D. Adults, of mixed sex and <1 month old, were used in the exposure bioassays. The protocol that was used in our bioassays to generate phosphine was the Phosphine Tolerance Test (Detia Degesch GmbH, Laudenbach, Germany) with some modifications, as performed by Agrafioti et al. 2021. In particular, the phosphine was generated within a plastic canister (5 L capacity) by adding 50 mL of water to two kit magnesium phosphide pellets. The concentration of phosphine gas inside the plastic canister was determined by using several dosimeter Draeger glass tubes (Draeger 25A, 0–10 000 ppm, Draeger Safety AG & Co., USA). Ten adults of each strain were placed in a plastic syringe of 100 mL with separate syringes used for each species and strain. Then, a specific gas quantity was removed from the canister with the syringe and blended with fresh air to produce a 100-mL volume with a concentration of either 1000 or 3000 ppm and compared to phosphine-free controls (0 ppm). The insects inside the syringe were held at the concentrations above for a 5 min exposure, while additional syringes containing only fresh air and insects were used as negative controls. To understand the propensity for movement after a 5 min phosphine exposure, a video-tracking procedure was used. After exposure of phosphine-resistant or phosphine-susceptible T. castaneum for 5 min, adult movement was evaluated immediately after exposure or 24 h later under the same environmental chamber conditions as the colonies (see Source Insects), but held without supplemental food. Movement was recorded for 3 h immediately after phosphine exposure but binned into 30 min intervals (e.g., 0–30, 30–60, 60–120, 120–150, and 150–180 min) in order to evaluate how movement varied over the measured time period. Movement was also recorded 24 h after exposure for periods of 1 h (binned by 30 min intervals). Movement measures of adults was tracked in six replicate Petri dishes (90 × 15 mm D:H) with a piece of filter paper (85 mm D, Grade 1, GE Healthcare, Buckinghamshire, United Kingdom) lining the bottom using a network camera (GigE, Basler AG, Ahrenburg, Germany) affixed 80 cm above the dishes. The Petri dishes were backlit using a LED light box (42 × 30 cm W:L, LPB3, Litup, Shenzhen, China) to increase contrast and affixed in place with white foam board with holes specifically cut to size for the petri dishes. Video was streamed to a nearby computer and processed in Ethovision (v. 14.0.1322, Noldus Inc., Leesburg, VA). The software was used to calculate the total distance moved (cm) and the mean instantaneous velocity (cm/s) for each adult. Each adult was considered a replicate and was never used more than once. Only adults classified as alive (normal movement speed and activity), or affected (sluggish movements or on back with legs twitching) were used in this assay. In total, 21–41 replicates were performed per treatment combination immediately after exposure, while 15–30 replicates were performed 24 h after exposure to phosphine. A total of 1525 adults were tested. There are two time periods (immediately after exposure and 24 h later), and two response variables (total distance moved in cm and mean instantaneous velocity in cm/s). There were three fixed explanatory variables: concentration of phosphine (0, 1000, or 3000 ppm), susceptibility (phosphine-susceptible or phosphine-resistant strain), and time interval (maximally 0–30, 30–60, 60–120, 120–150, and 150–180 min). Ethovision Assay morrison_ethal_ethovision_assay_fumigation_agdatacommons.csv To understand the propensity for movement after a 5 min phosphine exposure, a video-tracking procedure was used. After exposure of phosphine-resistant or phosphine-susceptible T. castaneum for 5 min, adult movement was evaluated immediately after exposure or 24 h later under the same environmental chamber conditions as the colonies (see Source Insects), but held without supplemental food. Movement was recorded for 3 h immediately after phosphine exposure, but binned into 30 min intervals (e.g., 0–30, 30–60, 60–120, 120–150, and 150–180 min) in order to evaluate how movement varied over the measured time period. Movement was also recorded 24 h after exposure for periods of 1 h (binned by 30 min intervals). Movement measures of adults was tracked in six replicate Petri dishes (90 × 15 mm D:H) with a piece of filter paper (85 mm D, Grade 1, GE Healthcare, Buckinghamshire, United Kingdom) lining the bottom using a network camera (GigE, Basler AG, Ahrenburg, Germany) affixed 80 cm above the dishes. The Petri dishes were backlit using a LED light box (42 × 30 cm W:L, LPB3, Litup, Shenzhen, China) to increase contrast and affixed in place with white foam board with holes specifically cut to size for the Petri dishes. Video was streamed to a nearby computer and processed in Ethovision (v. 14.0.1322, Noldus Inc., Leesburg, VA). The software was used to calculate the total distance moved (cm) and the mean instantaneous velocity (cm/s) for each adult. Each adult was considered a replicate and was never used more than once. Only adults classified as alive (normal movement speed and activity), or affected (sluggish movements or on back with legs twitching) were used in this assay. In total, 21–41 replicates were performed per treatment combination immediately after exposure, while 15–30 replicates were performed 24 h after exposure to phosphine. A total of 1525 adults were tested.

0
No licence known
Tags:
CGAHR Lab colonyIPMKansasNP304SoilTribolium castaneumbehaviorbehavioral ecologybenzoxyazenoidscereal ryecgahrcover cropsexudatesinsecticide resistancemovementmovement ecologyphosphinered flour beetlestored product peststored productstillage
Formats:
CSV
United States Department of Agriculture10 months ago
Farming Systems Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network in Morris, Minnesota

Farming Systems Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network in Morris, Minnesota Tillage is decreasing globally due to recognized benefits of fuel savings and improved soil health in the absence of disturbance. However, a perceived inability to control weeds effectively and economically hinders no-till adoption in organic production systems in the Upper Midwest, USA. A strip-tillage (ST) strategy was explored as an intermediate approach to reducing fuel use and soil disturbance, and still controlling weeds. An 8-year comparison was made between two tillage approaches, one primarily using ST the other using a combination of conventional plow, disk and chisel tillage [conventional tillage (CT)]. Additionally, two rotation schemes were explored within each tillage system: a 2-year rotation (2y) of corn (Zea mays L.), and soybean (Glycine max [L.] Merr.) with a winter rye (Secale cereale L.) cover crop; and a 4-year rotation (4y) of corn, soybean, spring wheat (Triticum aestivum L.) underseeded with alfalfa (Medicago sativa L.), and a second year of alfalfa. These treatments resulted in comparison of four main management systems CT-2y, CT-4y, ST-2y and ST-4y, which also were managed under fertilized and non-fertilized conditions. Yields, whole system productivity (evaluated with potential gross returns), and weed seed densities (first 4 years) were measured. Across years, yields of corn, soybean and wheat were greater by 34% or more under CT than ST but alfalfa yields were the same. Within tillage strategies, corn yields were the same in 2y and 4y rotations, but soybean yields, only under ST, were 29% lower in the fertilized 4y than 2 yr rotation. In the ST-4y system yields of corn and soybean were the same in fertilized and non-fertilized treatments. Over the entire rotation, system productivity was highest in the fertilized CT-2y system, but the same among fertilized ST-4y, and non-fertilized ST-2y, ST-4y, and CT-4y systems. Over the first 4 years, total weed seed density increased comparatively more under ST than CT, and was negatively correlated to corn yields in fertilized CT systems and soybean yields in the fertilized ST-2y system. These results indicated ST compromised productivity, in part due to insufficient weed control, but also due to reduced nutrient availability. ST and diverse rotations may yet be viable options given that overall productivity of fertilized ST-2y and CT-4y systems was within 70% of that in the fertilized CT-2y system. Closing the yield gap between ST and CT would benefit from future research focused on organic weed and nutrient management, particularly for corn.

0
No licence known
Tags:
Amaranthus retroflexusAmbrosia artemisiifoliaChenopodium albumEchinochloa crus-galliEconomic Research ServiceEnvironmentGRACEnetHydraMinnesotaMorris MN FSNP211NP212Natural Resources Conservation ServiceNatural Resources and GenomicsOxalisSetaria viridisSinapis arvensisSoilSoil TemperatureSwineairair temperaturealfalfaapplication ratebeveragesbiomassbiomass productioncalcium chloridecarboncarbon dioxidechiselingclaycleaningcollarscombustioncomputed tomographycomputer softwareconventional tillagecorncover cropscrop rotationcropscuttingdairy manurediscingdiurnal variationemissionsequationsexperimental designfarmingfarming systemsfertilizer applicationfertilizersflame ionizationforagefreezingglacial tillglobal warminggrain yieldgreenhouse gas emissionsgreenhouse gasesgrowing seasonharrowingharvestingheadheat sumshoeingicelakesmagnesiummanagement systemsmanual weed controlmarket pricesmature plantsmethanemixed croppingmolesmonitoringmowingnitrogen fixationnitrous oxideno-tillagenutrient contenton-farm researchorganic foodspHpasturespesticidespig manureplantingplowsregression analysisresidual effectsrootsrow spacingryesalesseed collectingseedbedsseedsshootssnowsoil depthsoil texturesorrelsoybeansspringspring wheatstarter fertilizersstatistical modelsstrip tillagetemperaturetillageweed controlweedswheatwinter
Formats:
HTML
United States Department of Agriculture10 months ago
Long-term tillage and cropping system experiment for Greenhouse gas Reduction through Agricultural Carbon Enhancement network and Nutrient Use and Outcome Network in Lincoln, Nebraska

Long-term tillage and cropping system experiment for Greenhouse gas Reduction through Agricultural Carbon Enhancement network and Nutrient Use and Outcome Network in Lincoln, Nebraska Lincoln NE Long-term Tillage Project Overview of NELITCSE: Long-term Tillage and Cropping System Experiment (Lincoln, NE) The objectives of this experiment is to evaluate the agronomic and environmental impacts of long-term tillage and crop rotation practices in a rainfed agroecosystem. This experiment was initiated in 1981 with continuous corn only under six tillage practices (chisel, tandem disk, moldboard plow, no-till, ridge-tillage, and subsoil tillage). In 1985, the experimental design was modified to include 3 crop rotation systems (continuous corn, corn-soybean, and continuous soybean) under 6 tillage practices. Each year, both the corn phase and soybean phase of the two-year rotation system are present. In 2015, all tillage practices were converted to no-till to evaluate the magnitude, direction, and rate of agronomic and soil changes to this management shift. In addition, the continuous soybean system was converted to continuous corn with a 3-species winter cover crop (hairy vetch, purple-topped radish, and cereal rye). Prepared 13 Sep 2016 (V. Jin)

0
No licence known
Tags:
Climate ChangeEnvironmentNP211NP212PrecipitationSoilsair temperaturecrop rotationcropsenvironmental impactfarminggrain yieldgreenhouse gassoybeanstillage
Formats:
ZIP
United States Department of Agriculture10 months ago
NVND Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network in Sidney, Montana

NVND Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network in Sidney, Montana Management practices, such as irrigation, tillage, cropping system, and N fertilization, may influence soil greenhouse gas (GHG) emissions. We quantified the effects of irrigation, tillage, crop rotation, and N fertilization on soil CO2, N2O, and CH4 emissions from March to November, 2008 to 2011 in a Lihen sandy loam in western North Dakota. Treatments were two irrigation practices (irrigated and non-irrigated) and five cropping systems (conventional-tilled malt barley [Hordeum vulgaris L.] with N fertilizer [CTBFN], conventional-tilled malt barley with no N fertilizer [CTBON], no-tilled malt barley-pea [Pisum sativum L.] with N fertilizer [NTB-PN], no-tilled malt barley with N fertilizer [NTBFN], and no-tilled malt barley with no N fertilizer [NTBON]). The GHG fluxes varied with date of sampling while peaking immediately after precipitation, irrigation, and/or N fertilization events during increased soil temperature. Both CO2 and N2O fluxes were greater in CTBFN under the irrigated condition but CH4 uptake was greater in NTB-PN under the non-irrigated condition than in other treatments. While tillage and N fertilization increased CO2 and N2O fluxes by 8 to 30%, N fertilization and monocropping reduced CH4 uptake by 39 to 40%. The NTB-PN, regardless of irrigation, might mitigate GHG emissions by reducing CO2 and N2O emissions and increasing CH4 uptake relative to other treatments. To account for global warming potential for such a practice, information on productions associated with CO2 emissions along with N2O and CH4 fluxes are needed.

0
No licence known
Tags:
Climate ChangeEnvironmentNP211NP212SoilWaterbiomasscarbon dioxidecropsfarmingfertilizersgrainsgreenhouse gas emissionsherbicidesirrigationmethanenitrogentemperaturetillage
Formats:
HTML
United States Department of Agriculture10 months ago
Nitrogen Rate Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network in Fort Collins, Colorado

Nitrogen Rate Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network in Fort Collins, Colorado Nitrogen fertilization is essential for optimizing crop yields; however, it increases N2O emissions. These emissions were monitored from several irrigated cropping systems receiving N fertilizer rates ranging from 0-246 kg/ha from years 2002-2006. Cropping systems included conventional-till continuous corn and no-till continuous corn at varying N rates. Nitrous oxide fluxes were measured during four growing seasons using static, vented chambers and a gas chromatograph analyzer. This work shows that the use of no-till can potentially reduce N2O emissions from irrigated systems and increase soil carbon storage.

0
No licence known
Tags:
Cropping SystemsEnvironmentNP211NP212Soilcornemissionsfarmingfertilizergreenhouse gas emissionsherbicidesmethanenitrous oxidetillage
Formats:
zipped file folder
United States Department of Agriculture10 months ago
Nitrogen Source Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network in Fort Collins, Colorado

Nitrogen Source Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network in Fort Collins, Colorado Nitrogen fertilization is essential for optimizing crop yields; however, it increases N2O emissions. The study objective was to compare N2O emissions resulting from application of commercially available enhanced-effi ciency N fertilizers with emissions from conventional dry granular urea in irrigated cropping systems. These emissions were monitored from several irrigated cropping systems receiving N fertilizer rates ranging from 0-246 kg/ha from years 2007-2008 with intermediate rates of 157 kg/ha applied to the barley crop in corn-barley rotation and 56 kg/ha applied to the dry bens in the corn-dry bean rotation. Cropping systems included conventional-till continuous corn (CT-CC), no-till continuous corn (NT-CC), no-till corn–dry bean (NT-CDb), and no-till corn–barley (NT-CB). Nitrous oxide fluxes were measured during ten growing seasons using static, vented chambers and a gas chromatograph analyzer. This work shows that the use of no-till and enhanced-effi ciency N fertilizers can potentially reduce N2O emissions from irrigated systems.

0
No licence known
Tags:
Cropping SystemsEnvironmentNP211NP212SoilWaterbarleycarbon dioxidecorncropsemissionsfarmingfertilizergreenhouse gas emissionsherbicidesirrigationmethanenitrous oxidetillage
Formats:
HTML
United States Department of Agriculture10 months ago
REAP Study for Resilient Economic Agricultural Practices in West Lafayette, Indiana

REAP Study for Resilient Economic Agricultural Practices in West Lafayette, Indiana Corn stover is an important livestock feed and will probably be a major source of renewable bioenergy, especially in the U.S. Corn Belt. Overly aggressive removal of stover, however, could lead to greater soil erosion and hurt producer yields in the long-run. Good residue management practices could help prevent erosion of valuable topsoil by wind and water while still providing a revenue source for producers, either as livestock feed or for use in renewable bioenergy. Plant residues also contribute to soil structure, nutrient cycling, and help sustain the soil microbiota. Good residue management could also help control the loss of greenhouse gases from agricultural soils that could add to already increasing levels of atmospheric greenhouse gases contributing to global climate change. Cumulative GHG emissions varied widely across locations, by management, and from year-to-year. Despite this high variability, maximum stover removal averaged across all sites, years, and management resulted in lower total emissions of CO2 (-12 ± 11%) and N2O (-13 ± 28%) compared to no stover removal. Decreases in total CO2 and N2O emissions in stover removal treatments were attributed to decreased availability of stover-derived C and N inputs into soils, as well as possible microclimatic differences. Soils at all sites were CH4 neutral or small CH4 sinks. Exceptions to these trends occurred for all GHGs, highlighting the importance of site-specific management and environmental conditions on GHG fluxes in agricultural soils.

0
No licence known
Tags:
Climate ChangeEnvironmentNP211NP212Soilbioenergycarbon dioxidecornfarmingfeedstocksgreenhouse gasesirrigationmethanenitrous oxidetillagewind
Formats:
ZIP
United States Department of Agriculture10 months ago
Soil Dynamics Research for Greenhouse gas Reduction through Agricultural Carbon Enhancement network in Auburn, Alabama

Soil Dynamics Research for Greenhouse gas Reduction through Agricultural Carbon Enhancement network in Auburn, Alabama This study provides data on soil C and N dynamics and subsequent trace gas emissions at the landscape scale. Evaluates effects of landscape and soil management on 1) methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) fluxes, 2) soil carbon (C) and nitrogen (N) mineralization and 3) cover crop decomposition and mineralization. Gas fluxes, C and N mineralization, and cover crop decomposition were determined on a 9-ha field at the E.V. Smith Research Center near Shorter, in AL. Consists of six replications of agroecosystem management [(corn (Zea mays L.)-cotton (Gossypium hirsutum L). rotation] that traverse the landscape. Soil managements included CsT, conventional tillage (CT), conservation tillage with dairy manure (CsTM), and conventional tillage with dairy manure (CTM) treatments. The soil management treatments were within summit, sideslope and the drainageway landscape positions. The drainageway landscape position emitted 46, 251, 59, and 185 mg CH4-C ha-1 h-1 from CT, CTM, CsT and CsTM treatments, respectively. The summit position was a CH4 consumer with CT and CsT treatments. Significant soil management treatment differences in N2O-N flux were observed only within the drainageway landscape position. Averaged across seasons, CT and CsT emitted similar N2O-N in the drainageway. Within the drainageway, dairy manure decreased N2O-N emission on CT treatments. Carbon dioxide emission in winter 2005 from CsT treatments (averaged across landscape positions) was 1304 g ha-1 h-1 CO2-C compared to 227 g ha-1 h-1 CO2-C from CT treatments. CsT and CsTM treatments increased soil organic C and total soil N after six years. This resulted in higher C and N mineralization on soils from CsT and CsTM treatments, with no differences between landscape positions. Potential C mineralization was similar for crimson clover, spring forage rape and white lupin amended soil while black oat amended soil immobilized N. Buried cover crops decomposed and mineralized faster than surface applied materials, with no differences in cover crop decomposition and mineralization k across landscape positions. Overall, landscape variability had minimal effect on C and N dynamics and cover crop decomposition compared to soil management effects. Conservation tillage, dairy manure applications, and cover crops showed potential to sequester soil organic C and increase total soil N in these systems.The study site is located at the Alabama Agricultural Experiment Station’s E.V. Smith Research Center, near Shorter. Four management treatments were established in late summer of2000 on a corn and cotton rotation that has both crops present each year. The management systems included a conventional tillage system (chisel- followed by disc-plow) with (CT+M) and without (CT) manure, and a conservation tillage system (non- inversion tillage) that incorporated the use of winter cover crops with (NT+M) and without manure (NT). A mixture of rye (Secale cereale L.) with black oat (Avena strigosa Schreb.), and a mixture of crimson clover (Trifolium incarnatum L.) with white lupin (Lupinus albus L.) and fodder radish (Raphanus sativus L.) were typically used as winter cover before cotton (Gossypium hirsutum L.) and corn (Zea mays L.), respectively. Four strips with an average length of 800 ft were established across the landscape to represent the four management systems for each crop per each replication. Each strip was further divided into cells to simplify sampling and field measurements. A total of six replications were established on the 22 ac field. Maximum slope is 8% and 9 soil map units are contained within this landscape. Prior research work at the same field site delineated four distinct zones using a digital elevation map, electrical conductivity survey, and traditional soil mapping techniques. For this study, three of these zones were selected and recognized as summit, backslope, and accumulation zones in the landscape. Two cells per management and zone were selected to conduct soil physical properties characterization (Fig. 1). Soil properties studied included total soil C by dry combustion at three depths, water infiltration with a mini-disk infiltrometer (Decagon Devices Inc., Pullman, WA)1, and water stable aggregates (Nimmo and Perkings, 2002). Data were analyzed with the MIXED model procedure in SAS (SAS Institute Inc., Cary, NC). Management system, landscape position, depth, and their interactions were considered as fixed effects.

0
No licence known
Tags:
EnvironmentNP211NP212Soilcarbon dioxidecorncottoncover cropsfarminggreenhouse gassoil organic carbontillage
Formats:
ZIP
United States Department of Agriculture10 months ago
Soil erosion and organic matter for central Great Plains cropping systems under residue removal

This study examined average annual changes in soil erosion from rainfall and wind forces, and trends in soil organic carbon (SOC). The diversity of geo-climatic land bases and potential feedstocks within the United States Central Great Plains (CGP) requires sustainable production that provides optimal resource utilization while maintaining or enhancing localized soil and environmental quality as much as possible. This study examined average annual changes in soil erosion from rainfall and wind forces and trends in soil organic carbon (SOC) as a function of commodity and/or bioenergy-based crop rotations, yield variations, and different field management practices, including residue removal across all land capability class (LCC) I-VIII soils in select areas of the CGP. Soil erosion and SOC (proxied by a soil conditioning index, or SCI) were analyzed on individual soil map unit components using the Revised Universal Soil Loss Equation, Version 2 (RUSLE2) and Wind Erosion Prediction System (WEPS) models.

0
No licence known
Tags:
Central Great PlainsNP215RUSLE2SoilWEPSWatercottoncrop managementcrop residueland classificationsoil conditioningsoil erosionsoil loss tolerancesoil organic carbonsoil qualitysoil texturesustainabilitytillagewind erosionwinter wheat
Formats:
CSVJPEG
United States Department of Agriculture10 months ago
TPAC Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network in West Lafayette, Indiana

TPAC Study for Greenhouse gas Reduction through Agricultural Carbon Enhancement network in West Lafayette, Indiana Recent efforts have attempted to establish emission estimates for greenhouse gases (GHG) from agricultural soils in the United States. This research project was conducted to assess the influence of cropping system management on non-carbon dioxide (non-CO2) GHG emissions from an eastern cornbelt alfisol. Corn (Zea mays L.) and soybean (Glycine max (L.) Merr.) rotation plots were established, as were plots in continuous management of native grasses or Sorghum/Sudan grass. GHG fluxes were monitored throughout each growing season from 2004 through 2007. Fluxes of N2O were significantly correlated with soil temperature (P < 0.001), and thus a Q10 correction was made (3.48 for N2O). Nitrous oxide emissions from corn were lowest from the precision tillage treatment (2.4 kg N ha-1 yr-1), significantly lower than the conventional tillage (4.9 kg N ha-1 yr-1) or cover crop corn treatments (5.0 kg N ha-1 yr-1). Corn-soybean and biomass-based cropping systems resulted in significantly greater N2O emissions than native grasses. There was a positive correlation between N fertilization rate and N2O emissions when comparing all treatments in this study. These soils were typically a sink for atmospheric CH4 for these cropping systems, and thus N2O is the primary non-CO2 GHG of concern. When evaluating the entire cropping system, native grasses resulted in the lowest N2O emissions, while corn-soybean rotation planted with precision tillage resulted in similar N2O emissions as bare soil and were significantly lower than emissions from the other cropping systems assessed.

0
No licence known
Tags:
EnvironmentNP211NP212Soil TemperatureWeatherair temperaturecarbon dioxidecornfarminggrassesgreenhouse gasmethanenitrous oxidesoil watersoybeanstillage
Formats:
HTML
United States Department of Agriculture10 months ago