National Renewable Energy Laboratory (NREL)
L o a d i n g
The National Renewable Energy Laboratory in the US specializes in the research and development of renewable energy, energy efficiency, energy systems integration, and sustainable transportation.
Available DatasetsShowing 1131 of 1131 results
- High-pressure and high-temperature (HPHT) lost circulation material (LCM) rheology test results, LCM particle size distributions (PSD) analysis, and HPHT LCM fluid loss test results. Three academic papers / reports derived from this research are also presented.1Licence not specifiedover 2 years ago
- The attached zip file includes a SolidWorks pack-and-go assembly of NREL's HERO WEC (hydraulic and electric reverse osmosis wave energy converter) V1.0. This model does not include all aspects of the design (i.e. RO (reverse osmosis) system, electrical enclosure, hose, cable) it only includes the WEC and PTO (power take-off) design.1Licence not specifiedover 2 years ago
- This zip file contains the files that are needed to simulate NREL's HERO WEC (hydraulic and electric reverse osmosis wave energy converter). This requires the user to have already installed WEC-Sim. In addition to the standard toolboxes that are required to run WEC-Sim the user will also need the Simscape Fluids and Simscape Driveline packages. In the zip file you will find the following: - HEROV1_HPTO.slx: Simulink-based WEC Sim model of the first gen (V1.0) Hydraulic PTO (power take-off) that was designed for the HERO WEC - wecSimInputFile.m: Input file needed to run the model - userDefinedFunctionsMCR.m: MCR (multi condition run) script that is needed if a use wants to simulate multiple wave conditions. - geometry (folder): Includes the geometry file that is needed for visualization - hydroData (folder): Includes the required WAMIT data to run WEC-Sim1Licence not specifiedover 2 years ago
- Updated Risk Registers for major subsystems of the StingRAY WEC completed according to the methodology described in compliance with the DOE Risk Management Framework developed by NREL.1Licence not specifiedover 2 years ago
- Submitted data include simulations related to underground thermal battery (UTB) simulations described in Modeling and efficiency study of large scale underground thermal battery deployment, presented at GRC, October 2021. The UTB is comprised of a tank of water, a helical heat exchanger in the center of tank and connected to a water source heat pump, and a phase change material (PCM). Compared to a conventional VBGHE, the UTB is designed to be installed at a much shallower depth, therefore, with a cheaper cost. In addition, the GSHP efficiency is improved due to natural convection of water and additional load capacity provided by PCM. The goal of this study is to explore factors that may affect the efficiency of large-scale UTB deployment. The simulations found in this submission relate to the report on UTB deployment.1Licence not specifiedover 2 years ago
- The goal of our project was to test innovative exploration technologies using existing and new data, and to ground-truth these technologies using slim-hole core technology. The slim-hole core allowed us to understand subsurface stratigraphy and alteration in detail, and to correlate lithologies observed in core with surface based geophysical studies. Compiled data included geologic maps, volcanic vent distribution, structural maps, existing well logs and temperature gradient logs, groundwater temperatures, and geophysical surveys (resistivity, magnetics, gravity). New data included high-resolution gravity and magnetic surveys, high-resolution seismic surveys, three slimhole test wells, borehole wireline logs, lithology logs, water chemistry, alteration mineralogy, fracture distribution, and new thermal gradient measurements. Drill holes are located at Kimama, Kimberly, and Mountain Home Air Force Base in Idaho.1Licence not specifiedover 2 years ago
- Rheology data obtained from flow loop tests, performed using different lost circulation materials (LCM) to study their effect on fluid rheology and wellbore hydraulics. The sealing performance of different LCM was tested using different fracture sizes. Five academic papers / reports derived from this research are also presented.1Licence not specifiedover 2 years ago
- This submission contains links to two open source published papers on the Kimama core hole, Project Hotspot. "Volcanic stratigraphy and age model of the Kimama deep borehole (Project Hotspot)" - Basalts erupted in the Snake River Plain of central Idaho and sampled in the Kimama drill core link eruptive processes to the construction of mafic intrusions over 5.5 Ma. "Evidence for cyclical fractional crystallization, recharge, and assimilation in basalts of the Kimama drill core, central Snake River Plain, Idaho: 5.5-million-years of petrogenesis in a mid-crustal sill complex" - Project Hotspot recovered almost 2 km of continuous drill core from the Kimama borehole, located in central Idaho on the axial volcanic zone. The Kimama drill core represents the most complete record of mafic volcanism along the Yellowstone-Snake River Plain hotspot track.1Licence not specifiedover 2 years ago
- Report on possible geodetic signature of the 3 stimulations in April 2022 as well as a comparison with existing InSAR data gathered over the site before, during, and after the stimulation. FORGE project 3-2535 is planning on using a casing source EM method for detecting and imaging a deep localized stimulated fracture zone at the Utah FORGE site.1Licence not specifiedover 2 years ago
- This report outlines the creation of three 3D resistivity models that will be used to determine the sensitivity of EM measurements for the hypothetical stimulated reservoir at FORGE as well as for EM survey design. FORGE project 3-2535 is planning on using a casing source EM method for detecting and imaging a deep localized stimulated fracture zone at the Utah FORGE site.1Licence not specifiedover 2 years ago
- The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU) device. This submission includes a technical report describing the advanced technology and final system design. Includes detailed descriptions of each component of each subsystem.1Licence not specifiedover 2 years ago
- Description of data products produced during the 3newables LLC. TEAMER (Testing & Expertise for Marine Energy) project entitled Initial Testing of Wave Energy Powered UV-C LED Anti-Biofouling System. Data are primarily comprised of imagery, quantitative biofouling mass, and scanning electron microscopy (SEM) analysis.1Licence not specifiedover 2 years ago
- The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU) device. ProteusDS is a full featured dynamic analysis software capable of simulating vessels, structures, lines, and technologies in harsh marine environments. This simulation software that was used to test the Advanced TidGen Power System. This submission includes the supporting Proteus simulation files.1Licence not specifiedover 2 years ago
- The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU) device. This submission contains supporting CFD files, case files and geometry for the Advanced TidGen. TSR = Tip speed ratio Cp = Power coefficient Cl = Lift coefficient Cd = Drag coefficient1Licence not specifiedover 2 years ago
- This short report details and tests the workflow that will be used to simulate steel well casings in deviated production/extraction boreholes at at the Utah FORGE site. Boreholes will be electrically energized and will serve as data sources for future proposed electromagnetic borehole surveys, which will be used to delineate/estimate the size and porosity of the main FORGE stimulated reservoir. FORGE project 3-2535 is planning on using a casing source EM method for detecting and imaging a deep localized stimulated fracture zone at the Utah FORGE site.1Licence not specifiedover 2 years ago
- The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU) device. This submission includes field Test Plans for subsystem and system tests.1Licence not specifiedover 2 years ago
- The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU) device. This submission includes the system fabrication plan for Advanced TidGen project.1Licence not specifiedover 2 years ago
- The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU) device. This submission includes the final presentation on all technical work performed, the final subsystem design, supporting analytical models, risk analysis and development plan.1Licence not specifiedover 2 years ago
- The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU) device. This submission includes a technical report on control system development, supporting simulations and supervisory control and data acquisition (SCADA) system requirements. Also included is the final design of the control and SCADA system, with supporting simulations and risk mitigation control strategies to address major system technical risks.1Licence not specifiedover 2 years ago
- The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU) device. This submission includes a technical report with final design models, supporting CFD analysis, structural analysis, and development plan.1Licence not specifiedover 2 years ago
- The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU) device. This submission includes the preliminary turbine hydrodynamic design, with supporting CFD analysis, structural analysis, and design description for TidGen versions 1.0 and 2.0.1Licence not specifiedover 2 years ago
- The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU) device. This submission includes the technical report on deployment and mooring system design requirements and subsystem risk analysis. A primary goal of the Advanced TidGen Power System project is to adapt ORPC's buoyant tensioned mooring system (BTMS) to the Advanced TidGen turbine generator unit (TGU). The TGU, as determined at the System Definition Review held in June 2017, is a dual-driveline, stacked system that implements hydrodynamic improvements for turbine design, turbine-turbine interactions and turbine-structure interactions. A major challenge for mooring and deployment system design will be to account for the substantial increases in loading incurred from increased power production and the resulting system drag during operation. Figure 1 shows the current system as presented for the Preliminary Design Review held in October 2017. This document addresses major risks, preventative measures, and mitigation strategies that have influenced this design and continue to drive development work toward the next design iteration. Also included is the technical report on mooring system design, supporting analytical models, and subsystem FMEA. Maine Marine Composites (MMC) has developed a simulation model to design a mooring system for Ocean Renewable Power Company) TidGen tidal energy converter. This document describes the simulation model, results, and the status of the current mooring system design. A preliminary anchor design is also proposed by MMC. The anchor is primarily a concrete gravity anchor. Structural steel is embedded inside the concrete to provide strength for the chain connection points. Steel L Channels also protrude underneath the concrete to act as a skirt to provide additional resistance.1Licence not specifiedover 2 years ago
- Acoustic data and metadata from Drifting Acoustic Instrumentation SYstem (DAISY) testing in Admiralty Inlet (connecting Puget Sound to the Strait of San Juan de Fuca) in July 2022. Tests focused on occurrences of flow noise for three hydrophone package variants and on the potential for alternative tether materials.1Licence not specifiedover 2 years ago
- High performance computing dataset with 11M+ jobs from NREL's Eagle supercomputer. These jobs were submitted to run on Eagle between Nov 2018 and Feb 2023. The data are sufficiently anonymized and do not include sensitive user or project data. HPC research community does not have many public, large, and complete job traces like this one, and releasing this dataset should help address this gap.1Licence not specifiedover 2 years ago
- The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU) device. This submission includes the technical report on the composite trade study for chosen material sets.1Licence not specifiedover 2 years ago
- Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.1Licence not specifiedover 2 years ago
- This link leads to a webpage with spreadsheets containing seismic borehole sensor locations and well trajectories for wells 56-32, 58-32, 78-32, 78B-32. Each of the files at the provided link include meta data on relevant information.1Licence not specifiedover 2 years ago
- To better understand the heat production, electricity generation performance, and economic viability of closed-loop geothermal systems in hot-dry rock, the Closed-Loop Geothermal Working Group -- a consortium of several national labs and academic institutions has tabulated time-dependent numerical solutions and levelized cost results of two popular closed-loop heat exchanger designs (u-tube and co-axial). The heat exchanger designs were evaluated for two working fluids (water and supercritical CO2) while varying seven continuous independent parameters of interest (mass flow rate, vertical depth, horizontal extent, borehole diameter, formation gradient, formation conductivity, and injection temperature). The corresponding numerical solutions (approximately 1.2 million per heat exchanger design) are stored as multi-dimensional HDF5 datasets and can be queried at off-grid points using multi-dimensional linear interpolation. A Python script was developed to query this database and estimate time-dependent electricity generation using an organic Rankine cycle (for water) or direct turbine expansion cycle (for CO2) and perform a cost assessment. This document aims to give an overview of the HDF5 database file and highlights how to read, visualize, and query quantities of interest (e.g., levelized cost of electricity, levelized cost of heat) using the accompanying Python scripts. Details regarding the capital, operation, and maintenance and levelized cost calculation using the techno-economic analysis script are provided. This data submission will contain results from the Closed Loop Geothermal Working Group study that are within the public domain, including publications, simulation results, databases, and computer codes. GeoCLUSTER is a Python-based web application created using Dash, an open-source framework built on top of Flask that streamlines the building of data dashboards. GeoCLUSTER provides users with a collection of interactive methods for streamlining the exploration and visualization of an HDF5 dataset. The GeoCluster app and database are contained in the compressed file geocluster_vx.zip, where the "x" refers to the version number. For example, geocluster_v1.zip is Version 1 of the app. This zip file also contains installation instructions. **To use the GeoCLUSTER app in the cloud, click the link to "GeoCLUSTER on AWS" in the Resources section below. To use the GeoCLUSTER app locally, download the geocluster_vx.zip to your computer and uncompress this file. When uncompressed this file comprises two directories and the geocluster_installation.pdf file. The geo-data app contains the HDF5 database in condensed format, and the GeoCLUSTER directory contains the GeoCLUSTER app in the subdirectory dash_app, as app.py. The geocluster_installation.pdf file provides instructions on installing Python, the needed Python modules, and then executing the app.1Licence not specifiedover 2 years ago
- The Super-Resolution for Renewable Energy Resource Data with Climate Change Impacts (Sup3rCC) data is a collection of 4km hourly wind, solar, temperature, humidity, and pressure fields for the contiguous United States under climate change scenarios. Sup3rCC is downscaled Global Climate Model (GCM) data. For example, the initial dataset "sup3rcc_conus_mriesm20_ssp585_r1i1p1f1" is downscaled from MRI ESM 2.0 for climate change scenario SSP5 8.5 and variant label r1i1p1f1. The downscaling process was performed using a generative machine learning approach called sup3r: Super-Resolution for Renewable Energy Resource Data (linked below as "Sup3r GitHub Repo"). The data includes both historical and future weather years, although the historical years represent the historical average climate, not the actual historical weather that we experienced. The Sup3rCC data is intended to help researchers study the impact of climate change on energy systems with high levels of wind and solar capacity. Please note that all climate change data is only a representation of the *possible* future climate and contains significant uncertainty. Analysis of multiple climate change scenarios and multiple climate models can help quantify this uncertainty.1Licence not specifiedover 2 years ago
- Performance data of a 1-meter diameter cross-flow tidal turbine consisting of three NACA 0018 blades with two support struts with high deflection hydrofoils. Data was collected at the University of New Hampshire Jere A. Chase Ocean Engineering Lab within the tow tank. Three turbine parameters were varied: the blade materials, blade shape, and support strut position. A detailed description of the testing set-up and data files contained within the compressed HDF.zip file is in the 'ReadMe.txt' file.1Licence not specifiedover 2 years ago
- The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU) device. This submission includes a summary presentation as an overview of the BP1 report for the Advanced TidGen Project.1Licence not specifiedover 2 years ago
- Final report including results and conclusions of the New Technology Qualification (NTQ) review of CalWave Power Technologies Inc's xWave technology, performed by American Bureau of Shipping.1Licence not specifiedover 2 years ago
- In December 2016, 1301 vertical-component seismic instruments were deployed at the San Emidio Geothermal field in Nevada. The first record starts at 2016-12-05T02:00:00.000000Z (UTC) and the last record ends at 2016-12-11T14:00:59.998000Z (UTC). Data are stored in individual files in one-minute increments in SEGD and MSEED formats. See the metadata in GDR submission (linked below as "Seismic Survey 2016 Metadata at San Emidio Nevada") for details about the seismic station locations, seismic data logger specifications, instrumentation specifications, descriptions of data, a fracture finding summary, and the final report for the 2016 seismic survey done in San Emidio, Nevada.1Licence not specifiedover 2 years ago
- This data was collected between October 12 and December 15 of 2021 at the University of New Hampshire (UNH) and Atlantic Marine Energy Center (AMEC) turbine deployment platform (TDP). This data set includes over 29 days of grid connected turbine operation during this 65 day time frame. The priority for this measurement campaign was to collect data while the turbine was electrically connected to the grid by means of a rectifier and inverter. The Fall_2021_UNH_Measurement_Timeline.png highlights when each instrument was functioning and the Fall_2021_UNH_Test_Log.jpg indicates the four main regions for analysis available from this measurement campaign. The TDP is a floating structure moored on the Portsmouth facing side of Memorial Bridge pier #2, which spans the Piscataqua River between Portsmouth, NH and Kittery, ME. The Piscataqua River connects the Great Bay Estuary to the Gulf of Maine and the river currents are dominated by tidal forcing with water velocities exceeding 2.5 m/s during spring ebb tides at this site which were previously characterized by Kaelin Chancey (Assessment Of The Localized Flow And Tidal Energy Conversion System At An Estuarine Bridge - UNH MS Thesis 2019). The turbine under test was a modified New Energy Corporation (Calgary, CA) model EVG-025 4-blade H-Darrius type vertical axis cross flow turbine that rotates in the clockwise direction with a rotor diameter of 3.2m and blade length of 1.7m. The hydro-foil profile was a NACA 0021 with a 10 inch chord length and a blade preset pitch angle of +4deg with a positive angle corresponding with the toe in direction. The standard EVG-025 has a rotor diameter of 3.4m and its rated power output is 25kW at 3 m/s. The rotor diameter was reduced to accommodate the size of the existing TDP moon-pool. This project was pursued to quantify device performance for cross flow turbines operating in a marine environment. Accurate physical models, to characterize cross flow turbine performance, require real operational data sets due to the complexity of blade fluid interactions. This data can help support model development which will help predict turbine performance when analyzing perspective project locations in the future. Instrumentation was deployed to measure; water speed/direction, electrical power output, turbine shaft speed, turbine thrust force, and platform motion. Concurrent measurements of these parameters allow for correlations (cause and affect) to be inferred, allowing for characterization of device performance over a range of operating conditions. Water currents were measured using Acoustic Doppler Current Profilers (ADCP's) and Acoustic Doppler Velocimeters (ADV's) directly upstream and downstream of the turbine for inflow, wake and turbulence measurements. Electrical power output was measured using the Voltsys rectifier and the Shark power meter. Shaft speed was calculated based on the Voltsys measurements of the permanent magnet three phase generator AC generation frequency, coupled directly to the cross flow turbine under test (i.e., no gear box). Platform motions were captured using a Yost IMU (inertial measurement unit). Turbine thrust loading was measured using a reaction arm about the turbine deployment platform spanning beam, where two bi-directional load cells were connected to the system via a pinned connection. This submission includes zipped folders for each instrument containing quality controlled (QC'd) data in daily .csv files for the relevant duration specific to each instrument, along with separate .csv file that contains the units for each variable. Some instrument daily files are quite large and can pose a challenge for a visual spreadsheet editor to open. A processing software like MATLAB or Python is recommended. Note the degree of QC varied between each instrument due to time constraints. Particular time and attention was given to perform quality control tests on the acoustic based instruments that are particularly susceptible to erroneous data reporting. All variables across all instruments were verified for name and proper units. A complete reference on the QC tests performed and subsequent data reported here is available in 2022 - OByrne MS Thesis Chapter 4. The zipped file structure, Data_Viewing_Matlab_Scripts, contains the same QC'd data reported in .csv files, but in .mat format, along with basic viewing and in depth processing scripts used to produce the results presented in 2022 - OByrne MS Thesis. To run the viewing and analysis and scripts available in the Data_Viewing_Matlab_scripts zip directory MATLAB R2021a is recommended. The viewer is directed to 2022 - OByrne MS Thesis for an introduction to the platform and turbine under test. Individual submissions will be created for each instrument to disseminate the raw data along with the .mat processing scripts used to create the final data set reported in this submission.1Licence not specifiedover 2 years ago
- This submission contains a summary of tank test derived WEC device behavior in different irregular sea states. CalWave sought to conduct experimental tank testing of scaled prototype units early on in the design process to obtain a first estimation of device performance for sea states of importance and to perform system identification/PTO tests. These experimental tests primarily aim to assess the wave to structure conversion efficiency and device behavior. Moreover, distinct model parameters of high interest were experimentally tested to validate numerical device modeling and optimization. These tests focused on system identification rather than performance maximization.1Licence not specifiedover 2 years ago
- Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.1Licence not specifiedover 2 years ago
- Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.1Licence not specifiedover 2 years ago
- This report describes the development of a preliminary 3D seismic velocity model at the Utah FORGE site and first results from estimating seismic resolution in the generated fracture volume during Stage 3 of the April 2022 stimulation. A preliminary 3D velocity model for the larger FORGE area was developed using RMS velocities of the seismic reflection survey and seismic velocity logs from borehole measurements as an input model. To improve the accuracy of the model in the shallow subsurface, travel times phase arrivals of the direct propagating P-waves were determined from the seismic reflection data, using PhaseNet, a deep-neural-network-based seismic arrival time picking method. The travel times were subsequently inverted using the input velocity model. The results showed that the input velocity model needs improvement as the resulting model appears too fast in the easter region of the FORGE area. During the next phase of this work, we will update the input velocity model and generate P-wave arrival times for additional seismic source locations, to improve the horizontal resolution in the sedimentary layer and to obtain a model that better matches the sedimentary layer and the travel time observations.1Licence not specifiedover 2 years ago
- The utility of passive seismic emission tomography for mapping geothermal permeability has been tested at San Emidio in Nevada. The San Emidio study area overlaps a geothermal field in production since 1987 and another resource to the south of the production field. Passive seismic data collections were completed at San Emidio in late 2016 by Microseismic Inc as part of a DOE project. The PSET results are being analyzed as part of the WHOLESCALE project. This submission includes P-wave velocity model data, and the passive seismic data with more information on each bellow.1Licence not specifiedover 2 years ago
- These are revised catalogs, related to the April, 2022 well 16A(78)-32 stimulation (phases 1,2, & 3), provided by Geo Energie Suisse (GES) that include additional events at the start of Stage 1 and some tidying up of some locations. These catalogs also include events for additional events that were auto-located to provide a larger dataset for statistical analyses, like b-value calculations. The actual auto-locations have been removed to prevent spurious location plots being created.1Licence not specifiedover 2 years ago
- This submission has wave resource assessments which were conducted for six locations based on IEC requirements using the DOE WPTO Hindcast data and MHKiT. The locations are chosen to provide varying wave climates and include PacWave South, OR; Wave Energy Testing Site (WETS), HI; Molokai, HI; St. Paul, AK; Yakutat, Ak; and Sebastion, FL. It includes the data gathered and the resulting report. This submission also includes a link to Hindcast dataset and some relevant software.1Licence not specifiedover 2 years ago
- Experimental data from the wave tank test of the Advanced control systems developed by Northwest Energy Innovations (NWEI) for the Azura at the University of Maine in Orono (UMO). Summary data is included utilizing the WEC Lab Testing Content Model v2.1. All raw and processed experimental data files are also included. The test plan and test report are included, along with the test plan and the test report from prior, passively controlled tests of the same model for reference.1Licence not specifiedover 2 years ago
- This data includes a document that describes the effort to collect and analyze water and gas samples from deep Utah FORGE wells 16A(78)-32, 58-32, 56-32 and 78B-32 along with additional pdf files showing ThermoChem's analyses attached as an appendix.1Licence not specifiedover 2 years ago
- Utah FORGE held a two-day seismic workshop on the University of Utah campus in Salt Lake City, Utah on September 26 and 27, 2022 to share what was learned from the seismic monitoring during the 2022 stimulation. This is a report documenting this workshop. The meeting was structured to cover four key topics: (1) seismic instrumentation, (2) seismic network design, (3) seismic monitoring protocol, and (4) development and implementation of seismic traffic light systems.1Licence not specifiedover 2 years ago
- Simulation input and output files, post-processed figures and excel tables, and tecplot layout files for generating figures. These simulations were run with TOUGHREACT V4.12 by Lawrence Berkeley National Laboratory in 2021. This work was completed as part of the geologic thermal energy storage (GeoTES) research project reported in the final report for Phase I of this work, which is linked below.1Licence not specifiedover 2 years ago
- This is a presentaiton from Metarock Laboratories on the thermal properties of Utah FORGE well 58-32 granite core. The presentation includes pictures of core samples, core details for the samples (sample depths and size), sample thermal expansion test results, and radial velocity measurements.1Licence not specifiedover 2 years ago
- Experimental tank testing report for CalWave's 1:20 & 1:30 scale prototype testing at the Lir National Ocean Test Facility in Ireland. Testing was completed in January 2018. Test report includes description of the scaled prototype, primary testing objectives, instrumentation and basin calibration.1Licence not specifiedover 2 years ago
- This submission presents the weekly geochemistry data of the long-term flow test performed within EGS Collab Experiment 1 from early 2019 to early 2020. The fluids from each producing borehole/interval (PI, PB, PDT and PST) along with the injectate were sampled roughly weekly from April 2019 to January 2020 for geochemistry analysis. The geochemical measurement was part of a long-term microbial profiling project (see details in the PNAS paper linked below). Additional background and methodologies are available in the PNAS paper linked bellow.1Licence not specifiedover 2 years ago
- This is the Utah FORGE well 16A(78)-32 stimulation microseismic detection and location report from Silixa LLC. The stimulation was accomplished during April, 2022.1Licence not specifiedover 2 years ago
- This is an exercise in optimizing the flow through a shrouded axial turbine to have the least resistance and to have optimal output and torque and energy. In this study, different variates of the original geometry of the current turbine designed by Hydrokinetic Energy Corp. (HEC) were evaluated for energy efficiency using Computational Fluid Dynamics (CFD). The objective was accomplished by a parametric study of the key geometric parameters for the shroud, the diffuser, and the hub.1Licence not specifiedover 2 years ago
- This report describes the current status of the Vertical Electromagnetic Profiling, or VEMP tool, that is on loan to Lawrence Berkeley National Lab (LBNL) from Geothermal Energy Research and Development Co., Ltd. (GERD), Japan. The report describes the initial inspection of the tool by LBNL scientists and engineers, and presents a path forward for it to be used at Utah FORGE.1Licence not specifiedover 2 years ago
- This Excel spreadsheet contains temperature survey results for Utah FORGE wells 58-32, 78-32, 56-32, 16A(78)-32 and 78B-32. It also contains charts and comparisons, along with a "Data Summary" which provides links to previous GDR submissions with temperature data for each well.1Licence not specifiedover 2 years ago
- This archive contains data from the tracer test performed during the Utah FORGE well 16A(78)-32 stimulation. This includes: 1. the raw data file from Pason in the csv format; 2. a one-page Word document from Pason that explains the headers and units used in their data file; 3. an Excel spreadsheet with concentration data and relevant Pason flow data; 4. a Word document with jpg versions of concentration charts (Figs. 1-3) and a tracer mass recovery chart (Fig. 4).1Licence not specifiedover 2 years ago
- This data set includes the numerical modeling input files and output files used to synthesize data, and the reduced-order machine learning models trained from the synthesized data for reservoir thermal energy storage site identification. In this study, a machine-learning-assisted computational framework is presented to identify High-Temperature Reservoir Thermal Energy Storage (HT-RTES) site with optimal performance metrics by combining physics-based simulation with stochastic hydrogeologic formation and thermal energy storage operation parameters, artificial neural network regression of the simulation data, and genetic algorithm-enabled multi-objective optimization. A doublet well configuration with a layered (aquitard-aquifer-aquitard) generic reservoir is simulated for cases of continuous operation and seasonal-cycle operation scenarios. Neural network-based surrogate models are developed for the two scenarios and applied to generate the Pareto fronts of the HT-RTES performance for four potential HT-RTES sites. The developed Pareto optimal solutions indicate the performance of HT-RTES is operation-scenario (i.e., fluid cycle) and reservoir-site dependent, and the performance metrics have competing effects for a given site and a given fluid cycle. The developed neural network models can be applied to identify suitable sites for HT-RTES, and the proposed framework sheds light on the design of resilient HT-RTES systems. All the simulations and the neural network model were done by Idaho National Laboratory. A detailed description of the work was reported in publication linked below.1Licence not specifiedover 2 years ago
- Risk Register for the RivGen power system, optimized for performance, durability and survivability, in Microsoft Excel format.1Licence not specifiedover 2 years ago
- This submission contains geotiffs, supporting shapefiles and readmes for the inputs and output models of algorithms explored in the Nevada Geothermal Machine Learning project, meant to accompany the final report. Layers include: Artificial Neural Network (ANN), Extreme Learning Machine (ELM), Bayesian Neural Network (BNN), Principal Component Analysis (PCA/PCAk), Non-negative Matrix Factorization (NMF/NMFk), input rasters of feature sets, and positive/negative training sites. See readme .txt files and final report for additional metadata. A submission linking the full codebase for generating machine learning output models is available under "related resources" on this page.1Licence not specifiedover 2 years ago
- Preliminary System Design Package for the Triton-C WEC, including a report and CAD drawings pertaining to the overall preliminary design, system arrangement, surface float hull, and surface float arrangement.1Licence not specifiedover 2 years ago
- NREL, as part of the Play Fairway Analysis Retrospective, compiled and mapped publicly available geologic and geophysical data in relation to the 2008 USGS geothermal potential analysis. Included in this submission are maps displaying the publicly available data for LIDAR coverage, aeromagnetic coverage, gravity station locations, and geologic map coverage over the Western United States.1Licence not specifiedover 2 years ago
- Four days (June 14-17, 2021) of ARIS acoustic camera data from the main research barge of the Tanana River Test Site operated by UAF. Data are collected sidelooking with the turbine in part of the field of view. This data was collected as part of a fish collision risk study. An acoustic camera was used rather than a traditional underwater camera due to the high levels of suspended sediments at the Tanana River Test Site.1Licence not specifiedover 2 years ago
- This is a project description video by Dr. William W. Fleckenstein related to their "Development of Multi-Stage Fracturing System and Wellbore Tractor to Enable Zonal Isolation During Stimulation and EGS Operations in Horizontal Wellbores" R&D project at Utah FORGE which is linked bellow.1Licence not specifiedover 2 years ago
- Git archive containing Python modules and resources used to generate machine-learning models used in the "Applications of Machine Learning Techniques to Geothermal Play Fairway Analysis in the Great Basin Region, Nevada" project. This software is licensed as free to use, modify, and distribute with attribution. Full license details are included within the archive. See "documentation.zip" for setup instructions and file trees annotated with module descriptions.1Licence not specifiedover 2 years ago
- This package contains USGS data contributions to the DOE-funded Nevada Geothermal Machine Learning Project, with the objective of developing a machine learning approach to identifying new geothermal systems in the Great Basin. This package contains three major data products (geophysics, heat flow, and fault dilation and slip tendencies) that cover a large portion of northern Nevada. The geophysics data include map surfaces related to gravity and magnetic data, and line and point data derived from those surfaces. Heat flow data include an interpolated map of heat flow in mW/m^2, an error surface, and well data used to construct them. The dilation and slip tendency information exist as attributes assigned to each line segment of mapped faults and geophysical lineaments. GDR submission contains link to official USGS data release. Additional metadata available on source DOI page.1Licence not specifiedover 2 years ago
- This paper discusses the progress on a project funded by the DOE Utah FORGE (Frontier Observatory for Research in Geothermal Energy) for the development of a subsurface heat exchanger for Enhanced Geothermal Systems (EGS) using unique casing sleeves cemented in place and are used first as a system for rapid and inexpensive multi-stage stimulations and second to perform conformance control functions at 225 oC. The proposed sleeves will use a single-sized dissolvable ball to open for fracture stimulation. After stimulation, and once the balls dissolve, the sleeves are open for immediate fluid injection. A separately designed wellbore tractor specific for both fluid detection and valve manipulation is then deployed to detect and control the injection entry points to create an effective EGS through paired horizontal injectors and open hole producers. The wells will be connected through multiple networks of induced and natural fractures that can be controlled throughout the field life.1Licence not specifiedover 2 years ago
- This dataset includes chemistry of geothermal water samples of the Camas Prairie area in Idaho. The samples included in this dataset were collected over the period of 2016-2019. Collection/analysis of new water samples and compilation of existing water chemistry database were conducted for Snake River Play Fairway Project. All chemical analysis of the samples were conducted in the Analytical Laboratory at the Center of Advanced Energy Studies (unless otherwise indicated) in Idaho Falls, Idaho. Isotope analysis were conducted in analytical/isotope measurement labs at Lawrence Berkeley National Laboratory, Utah State University, and University of Utah.1Licence not specifiedover 2 years ago
- This is a link to downhole geophone data collected by Schlumberger. These data were collected in the Utah FORGE deep seismic monitoring wells 58-32 and 56-32. The format is a standard SEGY and the units are bits. To convert to acceleration (m/s2) multiply by 2.333 x 10-7. Use one of the scripts linked below to use wget commands to pull the data.1Licence not specifiedover 2 years ago
- Time series load and PV data from an IEEE123 bus system. An example electrical system, named the OEDI SI feeder, is used to test the workflow in a co-simulation. The system used is the IEEE123 test system, which is a well studied test system (see link below to IEEE PES Test Feeder), but some modifications were made to it to add some solar power modules and measurements on the system. The aim of this project is to create an easy-to-use platform where various types of analytics can be performed on a wide range of electrical grid datasets. The aim is to establish an open-source library of algorithms that universities, national labs and other developers can contribute to which can be used on both open-source and proprietary grid data to improve the analysis of electrical distribution systems for the grid modeling community. OEDI Systems Integration (SI) is a grid algorithms and data analytics API created to standardize how data is sent between different modules that are run as part of a co-simulation. The readme file included in the S3 bucket provides information about the directory structure and how to use the algorithms. The sensors.json file is used to define the measurement locations.1Licence not specifiedover 2 years ago
- This is the regional dataset compilation for the INnovative Geothermal Exploration through Novel Investigations Of Undiscovered Systems (INGENIOUS) project. The primary goal of this project is to accelerate discoveries of new, commercially viable hidden geothermal systems while reducing the exploration and development risks for all geothermal resources. These datasets will be used in INGENIOUS as input features for predicting geothermal favorability throughout the Great Basin study area. Datasets consist of shapefiles, geotiffs, tabular spreadsheets, and metadata that describe: 2-meter temperature probe surveys, quaternary faults and volcanic features, geodetic shear and dilation models, heat flow, magnetotellurics (conductance), magnetics, gravity, paleogeothermal features (such as sinter and tufa deposits), seismicity, spring and well temperatures, spring and well aqueous geochemistry analyses, thermal conductivity, and fault slip and dilation tendency. For additional project information, see the INGENIOUS project site linked in the submission. Terms of use: These datasets are provided "as is", and the contributors assume no responsibility for any errors or omissions. The user assumes the entire risk associated with their use of these data and bears all responsibility in determining whether these data are fit for their intended use. These datasets may be redistributed with attribution (see citation information below). Please refer to the license information on this page for full licensing terms and conditions.1Licence not specifiedover 2 years ago
- This engineering design and specification document contains the applications, specifications, testing, materials, and running methods for the Open-Hole Packer. The Open Hole Packer is designed to seal 8.5 to 9.75 inch open-holes with a 7 inch casing. The design is intended to seal up to 6,000 psi of differential pressure and temperatures of up to 437F (225C). This document is the first step in the design process.1Licence not specifiedover 2 years ago
- This is the Utah FORGE annual report for Phase 3A year 1, which was completed on December 28th, 2020. This report includes site infrastructure, site operations, seismic monitoring, a conceptual geological model, outreach, and communications for the Utah FORGE project during Phase 3A in 2020. Utah FORGE projects showcase the role of geothermal energy and Enhanced Geothermal Systems (EGS) as a renewable source of power for the United States. The geoscientific investigations done in the Utah FORGE projects demonstrate the surrounding region holds significant potential for future EGS development.1Licence not specifiedover 2 years ago
- This is a report from Metarock Laboratories on the thermal properties of Utah FORGE wells 16A(78)-32 & 58-32 granite. The report includes pictures of core samples, core details for the samples (where the sample was taken and the size of the sample), sample thermal expansion test results, radial velocity measurements, and hydrostatic test results.1Licence not specifiedover 2 years ago
- Submission includes data from laboratory slide-hold-slide tests, combined with flow through tests, conducted on Westerly granite with 30 degree sawcut. Tests were conducted with a constant confining pressure of 30 MPa with an average pore pressure of 10 MPa at temperatures of 23 and 200 degC. Three fluid flow conditions were examined (1) no flow, (2) cycled flow, and (3) continuous flow. Data were collected to asses the effect of temperature and pore fluid on frictional healing rates in granite at geothermal conditions. Data is available in XML and JSON data types.1Licence not specifiedover 2 years ago
- This document provides the applications, specifications, testing, materials, and running methods for the engineering team at PertoQuip to design the Locking Bridge Plug (LBP) and the Landing Profile (LP). This is the first step in developing a new tool for. The report includes application, operation, and specifications for the Locking Bridge Plug and Landing Profile developed by PetroQuip. Develop a Locking Bridge Plug (LBP) that isolates different internal sections (stages) of the casing by locating and sealing in a Landing Profile (LP) installed on and run with the casing. The LP can also be run as part of a full completion system with additional tools as needed (e.g. liner hanger, flow initiation toe sub). The system will be utilized in both the Cased and the Open-Hole applications.1Licence not specifiedover 2 years ago
- This is the modeling data (input/output files of TOUGHREACT 4.10) used to simulate the reactive transport processes of the Aquifer Thermal Energy Storage (ATES) operations at Stockton University, NJ. Readme.txt lists all the files. TOUGHREACT 4.10 requires to reproduce the modeling output. The modeling data in this submission is related to the Aquifer Injection for Energy Storage purposes outlined in "Reactive Transport Modeling of Aquifer Thermal Energy Storage System at Stockton, NJ During Seasonal Operations".1Licence not specifiedover 2 years ago
- This is the annual report for Utah FORGE Phase 3A, year two, which was published on July 28th, 2022. The report includes site infrastructure, site operations, seismic monitoring reports, FORGE modeling reports, and external research and design. The ultimate objective of Utah FORGE is to demonstrate the viability of Enhanced Geothermal System (EGS) energy development. This report presents an overview of Phase 3A Year 2 activities. Year 1 activities transitioned the Utah FORGE project from site characterization and baseline monitoring to infrastructure development required for full deployment of the Utah FORGE laboratory.1Licence not specifiedover 2 years ago
- This dataset includes earthquake catalogues for the three stages of the 2022 well 16A(78)-32 stimulation provided by Geo Energie Suisse. Events in these catalogues have been visually inspected. There are additional events of lower signal to noise that were automatically detected. Those events will require additional analysis and processing.1Licence not specifiedover 2 years ago
- Laboratory experimental data on saw-cut interface of Westerly Granite and Utah Forge granitoid rocks. Experiments include velocity-stepping and fluid pressure stepping experiments. Mechanical data from 3 ISCO pumps connected to a Temco pressure vessel measure axial, confining and fault: fluid pressure (kPa), fluid flow rate (mL/min) and volume remaining in pump (mL). Non-linear acoustic data acquired via Verasonics systems connected to PZTs inside the pressure vessel give the timeshift, amplitude and RMS amplitude of the passing P-wave.1Licence not specifiedover 2 years ago
- This is an Excel spreadsheet containing the results of X-ray fluorescence from well 56-32 sludge samples. The instrumentation used was a Olympus Vanta M series handheld XRF analyzer. A glass (SiO2) "blank" was analyzed at the beginning and end of each sample batch to detect contamination within the instrument. The standard 2711A was analyzed at the beginning and end of each sample batch to detect drift in instrument precision over time. Material was analyzed in a plastic cup with a prolene thin film cover for minimal interference.1Licence not specifiedover 2 years ago
- First commissioning data for the new laser doppler velocimetry (LDV) system that will be used at the Tyler Flume at the University of Washington. The LDV system can measure three components of velocity at a point. For this dataset the three components were operated in non-coincident mode and data were acquired at the center of the empty facility. Comparisons of freestream turbulence were made with a Vectrino slightly upstream of the LDV measurement location.1Licence not specifiedover 2 years ago
- This is the Phase 3 native state model update. The Phase 3 numerical model represents a significant subsurface volume below the FORGE site footprint. The model domain of 4.0 km x 4.0 km x 4.2 km is located approximately between depths of 4000 to 4200 meters below land surface. This data archive consists of 10 files, 4 of which are simulation input files and the remaining 6 are simulation output files. There is an included readme.txt file that contains details on each of the data files. The input files include meshes, FALCON code inputs, tabulated data of water properties, temperature values, and model boundaries. The output files include simulation outfiles and point data of modeled material properties.1Licence not specifiedover 2 years ago
- This is an LCOE (levelized cost of energy) baseline assessment for the Wave Carpet.1Licence not specifiedover 2 years ago
- This dataset includes an Excel file with the results of B-value tests to determine the magnitude of the back pressure required for full saturation of Sierra White granite samples. Test were conducted on cylindrical rock specimens of Sierra White granite in a custom water pressurized chamber. Dimensions and properties of Sierra White granite specimens are summarized in the PDF file. The PDF file also includes a description of the B-value tests, experimental procedure, and results.1Licence not specifiedover 2 years ago
- The data herein contains all data collected and used for the Performance Characterization Testing and Model Calibration of a Vertical Axis Hydrokinetic Turbine. The data includes performance data and durability data for the Hydrokinetic Turbine. The device performance data contains shaft RPM, turbine RPM, power output, flow velocity, pressure, and pressure drop across the turbine. The mechanical durability data includes stress and strain at varied depths and velocities. There is also an FEA analysis included. This TEAMER project was awarded to Emrgy, Inc.in collaboration with Alden Research Laboratory LLC.1Licence not specifiedover 2 years ago
- PR100 is a comprehensive analysis of stakeholder-driven pathways for Puerto Rico to achieve its goal of 100% renewable energy by 2050. The data includes boundaries, habitats, hazards, infrastructure, and topography throughout Puerto Rico. Most of the data is in geospatial and json formats. Links to project background, history, and planning are also included along with the data.1Licence not specifiedover 2 years ago
- This is the LCOE analysis spreadsheet and content model for the heaving point absorber buoy developed for controls purposes. The cost assessment was done on a wave-farm of 100-units.1Licence not specifiedover 2 years ago
- This submission includes the wave tank testing data used to validate the controls optimization efforts of a heaving 1-DoF buoy.1Licence not specifiedover 2 years ago
- A machine readable collection of documented wind siting ordinances at the state and local (e.g., county, township) level throughout the United States. The data were compiled from several sources including, DOE's Wind Exchange Ordinance Database (Linked in the submission), National Conference of State and Legislatures Wind Energy Siting (also linked in the submission), and scholarly legal articles. The citations for each ordinance are included in the spreadsheet. This data is an updated to a previously developed database of wind ordinances found in OEDI Submission 1932: "U.S. Wind Siting Regulation and Zoning Ordinances"1Licence not specifiedover 2 years ago
- This catalog describes the seismicity associated with the 2019 stimulation at Utah FORGE. Containing both matched-filter detections (Dzubay et al., 2022) and Schlumberger-recorded events (detected with a 12-level geophone string), the final combined catalog contains a total of 534 microseismic events spanning -2.0 Mw to -0.1 Mw. Users may differentiate between SLB and MF events using the fact that SLB event magnitudes are recorded to a higher level of precision (MF mags determined using relative amplitude ratios). Users should be wary of locations and depths (measured from sea level) for MF events, as all detections were assigned the same locations as their template events.1Licence not specifiedover 2 years ago
- 1301 Vertical Component seismic instruments were deployed at San Emidio Geothermal field in Nevada in December 2016. The first record starts at 2016-12-05T02:00:00.000000Z (UTC) and the last record ends at 2016-12-11T14:00:59.998000Z (UTC). Data are stored in individual files in one-minute increments. Data includes seismic station locations, seismic data logger specifications, instrumentation specifications, descriptions of data, a fracture finding summary and the final report for the 2016 WHOLESCALE seismic survey done in San Emidio, Nevada.1Licence not specifiedover 2 years ago
- This is a link to the website where DAS seismic data, collected from wells 78-32 and 78B-32 during the Utah FORGE 2022 stimulation, is now available for download. The data can be accessed at "Well 16A78-32 2022 Stimulation Seismicity Data" link in the submission under the Silixa heading. The page includes surface acquisition nodal datasets, downhole geophone data, and Silixa fiber data. Raw seismic stimulation data and the scripts to process this data is under the Silixa heading.1Licence not specifiedover 2 years ago
- In 2002 and 2003 a collaborative effort was undertaken between Lawrence Berkeley National Laboratory, Sandia National Laboratories, the USGS Menlo Park, the USGS Hawaiian Volcano Observatory, and Electromagnetic Instruments Inc. to study the Kilauea volcano in Hawaii using the magnetotelluric (MT) technique. The work was motivated by a desire to improve understanding of the magma reservoirs and conduits within Kilauea and the East and Southwest Rift zones, which has implications for understanding Kilaueas plumbing system. An improved understanding of the rift zones has implications in understanding large-scale landslides that are generated in the Hilina Slump, which produce significant impacts on coastal communities. Up to eight stations operated simultaneously, with multiple remote reference sites, and data were processed using multi-station robust processing techniques. In total, data were acquired at 70 sites over the Southwest and East rift zones. Good to excellent quality data were obtained even in the harshest conditions, such as those encountered on the fresh lava flows of the East Rift Zone (ERZ), where electrical contact resistances are on the order of 100 kOhm. This data supports the continuing efforts to increase geothermal power on the island of Hawaii. Each of the 70 EDI files are the MT impedance tensors for 1 site. There is also a description of the processing of the data and a site map showing the locations of each site.1Licence not specifiedover 2 years ago
- In addition to the foam data that were obtained from literature and that were collected from the current study, simulation data was also generated from finite element analysis (FEA) conducted in this study using COMSOL Multiphysics software. The FEA models were built to simulate the experiments conducted at Oak Ridge National Laboratory (ORNL) on cement and granite samples. In these FEA models, temperature was kept at ambient while the pressure profile resembled the loading conditions during the ORNL experiments, where pressure was either monotonically increased or applied cyclically. The cement material was used as a model material and was used to study Von Mises stress and tensile stress distribution for different bore hole length geometry using a parametric sweep with water as fracturing fluid using solid-fluid interaction module. For the granite material, FEA models were developed for stress analysis of cylindrical samples with water or foam fluids. The solid mechanics module in COMSOL was implemented to solve for Von Mises stress and tensile stress. The fluid-structure interaction module was implemented to solve for water-foam interaction on granite cylinder with addition of fluid-loading on structure, i.e., large deformation in solid mechanics with no impact on fluid deformation. Foam was considered as a pseudo single-phase compressible fluid for which material properties were calculated from water and gas (nitrogen) phases. The density of foam is calculated as a function of the densities of water and nitrogen, while viscosity is a function of temperature. Four types of FEA analyses were modelled: 1. Monotonic injection with water 2. Monotonic injection with foam 3. Cyclic injection with water 4. Cyclic injection with foam All the COMSOL files are converted to a zip file which is save in .mph.1Licence not specifiedover 2 years ago
- Geothermal exploration and production are challenging, expensive and risky. The GeoThermalCloud uses Machine Learning to predict the location of hidden geothermal resources. This submission includes a training dataset for the GeoThermalCloud neural network. Machine Learning for Discovery, Exploration, and Development of Hidden Geothermal Resources.1Licence not specifiedover 2 years ago
- These data provide the 2022 update of the Electricity Annual Technology Baseline (ATB). Starting in 2015 NREL has presented the ATB, consisting of detailed cost and performance data, both current and projected, for electricity generation and storage technologies. The ATB products now include data (Excel workbook, Tableau workbooks, and structured summary csv files), as well as documentation and user engagement via a website, presentation, and webinar. Starting in 2021, the data are cloud optimized and provided in the OEDI data lake. The data for 2015 - 2020 are can be found on the NREL Data Search Page. The website documentation can be found on the ATB Website.1Licence not specifiedover 2 years ago
- This archive includes data from the University of Washington WASIRF (Washington Air-Sea Interaction Research Facility) flume. WASIRF is a laboratory testing tank at the Northwest National Marine Renewable Energy Center designed to investigate wind-wave-current interactions. It includes test data for simultaneous waves and current generation done at the WASIRF lab. A report included in the archive further details testing methodology. Wave and current data is provided in .dat files.1Licence not specifiedover 2 years ago
- The Hawaii Play Fairway Project deepened an already existing water well in Palawai Basin, Lanai island. Lanai Well #10 was deepened from 427 m to ~1057 m, with nearly continuous rock core collected. Spanning the dates from May 13 to July 5, 2019, the daily drilling reports of Lanai Well #10 includes a log of events during drilling and well information (e.g. location, elevation, and casing). A project by the University of Hawaii at Manoa, the Hawaii Play Fairway project was funded by the U.S. Department of Energy Geothermal Technologies Office (award DE-EE0006729). For more information, including preliminary core photos and a log of drilling activity, go to the Hawaii Groundwater and Geothermal Resources website linked in the resources.1Licence not specifiedover 2 years ago
- A machine readable collection of documented solar siting ordinances at the state and local (e.g., county, township) level throughout the United States. The data were compiled based on a locality-by-locality review zoning ordinances after completing an initial review of scholarly legal articles. The citations for each ordinance are included in the spreadsheet.1Licence not specifiedover 2 years ago
- Configurations as tested and modeled in final phase of project for the Delos-Reyes Morrow Pressure Device (DMP), commercialized by M3 Wave LLC as "APEX."1Licence not specifiedover 2 years ago
- Field testing of a dual sonar system for detecting woody debris in natural settings was conducted at the Tanana River Test Site (TRTS) in Nenana, AK between 8/26 and 9/23, 2015. The TRTS is approximately 65 miles south of Fairbanks and is well suited for testing hydrokinetic energy generation technologies and environmental monitoring technologies such as the dual sonar system used here in realistic settings.1Licence not specifiedover 2 years ago
- The Ocean Renewable Power Company's (ORPC's) goal is to design, develop, and test hydrofoils with large deflections. The effects of the deflections on cross-flow turbine performance would be evaluated in order to inform design considerations for full-scale water turbines and other marine hydrokinetic devices. CFD models of helical model scale turbines tested at UNH OpenFOAM v1912 Tip Speed Ratio (TSR) = 3.00 Different strut configurations1Licence not specifiedover 2 years ago
- Foam thermal stability was studies at Temple University in collaboration with Oak Ridge National Lab (ORNL). The goal of this project is to explore thermally stable foams as hydrofracking fluid media for potential applications in enhanced geothermal system (EGS). Data generated from this project will allow researchers to explore foam as potential fracturing fluid. More than 800 data points on the half-life of foams are recorded in Excel files in the included archive resource (Half-life of Foams with Different Surfactants and Stabilizing Agents). The Excel file within each surfactant folder contains half-life data of the respective surfactant with different stabilizing agents, pressure, and temperature. The respective folders also contains Word files describing the details of the data included in the respective Excel sheet.1Licence not specifiedover 2 years ago
- The Ocean Renewable Power Company's (ORPC's) goal is to design, develop, and test hydrofoils with large deflections. The effects of the deflections on cross-flow turbine performance would be evaluated in order to inform design considerations for full-scale water turbines and other marine hydrokinetic devices. Finite element models - NASTRAN files Model scale turbines tested in UNH tow tank Model loads from CFD models1Licence not specifiedover 2 years ago
- The Ocean Renewable Power Company's (ORPC's) goal is to design, develop, and test hydrofoils with large deflections. The effects of the deflections on cross-flow turbine performance would be evaluated in order to inform design considerations for full-scale water turbines and other marine hydrokinetic devices. OpenFOAM V1912 files for straight foil model scale turbines in the University of New Hampshire tow tank. Strut Locations = (0.13, 0.225, 0.450, 0.675, 0.900) [m] Tip speed ratio = 2.401Licence not specifiedover 2 years ago
- This package includes the final technical report for the Play-Fairway project in Washington State. It includes all activities and reporting from phases 1, 2, and 3. The primary goal of this study is to develop a suite of tools and methods that help identify a ?fairway? where the three main aspects of a functioning geothermal system are most likely to be found and particularly focuses on developing these tools for use in an actively deforming magmatic arc where heat is associated with volcanic centers and permeability is provided by a network of suitably stressed active faults.1Licence not specifiedover 2 years ago
- The Ocean Renewable Power Company's (ORPC's) goal is to design, develop, and test hydrofoils with large deflections. The effects of the deflections on cross-flow turbine performance would be evaluated in order to inform design considerations for full-scale water turbines and other marine hydrokinetic devices. FEA models - NASTRAN Helical foil turbines tested at UNH tow tank Glass and carbon composite material properties Loads derived from CFD models1Licence not specifiedover 2 years ago
- This is a PDF file generated by Woolsey Land Surveying, P.C containing the surveyed locations, as located, in Latitude and Longitude degrees, of the Utah FORGE FSB4, FSB5, & FSB6 shallow seismic well locations.1Licence not specifiedover 2 years ago
- Version 2 of the GeoRePORT protocols and excel-based reporting tools. Software allows users to grade the geologic, technical, and socio-economic conditions at a geothermal resource location for both electricity generation and direct-use. Includes tool and protocols for: * Geologic Assessment Tool * Technical Assessment Tool * Socio-Economic Assessment Tool * International Socio-Economic Assessment Tool In addition, GeoRePORT now includes a Resource Size Assessment tool and protocol.1Licence not specifiedover 2 years ago
- 2008-2009 bottom currents, turbidity, wind and waves in Lake Erie. The dataset is used for calculating bottom shear stress and evaluating bottom shear stress parameterization methods. Bottom shear stress is the driving force of sediment entrainment. Understanding bottom shear stress and being able to model it allows for better understanding of erosion and deposition in Lake Erie.1Licence not specifiedover 2 years ago
- This Excel spreadsheet contains Utah FORGE groundwater data for wells WOW2 and WOW3. The data was updated on March 16th, 2022 and contains legacy data. Groundwater data includes the level, offset, date, and time for each measurement. Temperature, drift, water elevation and other parameters are recorded. Figures in the data include a water elevation over time plot. Legacy data ranges from year 1976 to 2019 and updated data ranges from year 2019 to 2021.1Licence not specifiedover 2 years ago
- Final report on a TEAMER study undertaken by Alden Research Laboratory for the Mono-radial turbine invented by John Clark Hanna DBA: Hanna Wave Energy Primary Drives. The study is a predictive numerical and CFD (computational fluid dynamics) report of the mentioned Hanna Mono-Radial Turbine. The device is an impulse-type mono-radial air turbine PTO for wave energy conversion. The turbine is self-rectified, meaning that it spins in one direction only while capturing the bi-directional air flows developed within an OWC (Oscillating Water Column) system.1Licence not specifiedover 2 years ago
- Columbia Power LCOE (levelized cost of energy) Model for the Stingray H1 at the DOE Reference Site of Humboldt, CA. The model is integrated with and reports LCOE from DOE Cost Breakdown Structure1Licence not specifiedover 2 years ago
- Description: This folder contains the results for the WaterTAP3 model that was used for the eight NAWI (National Alliance for Water Innovation) baseline studies published in the Environmental Science and Technology special issue: Technology Baselines and Innovation Priorities for Water Treatment and Supply. The data structure and content are described in a README.txt file. For more details on how to use the data and interpret the results please refer to the model documentation and GitHub site linked in the submission.1Licence not specifiedover 2 years ago
- This living document will illustrate Standard Operating Procedures (SOPs) for sampling biofilm material from reverse osmosis (RO) membrane modules. The SOPs will empower the NAWI research community to apply omics tools (e.g., time-series metagenomic, meta-transcriptomic, metaproteomic and metabolomic workflows) to fundamentally understand biofilm formation with unprecedented resolution (e.g., the transition from innocuous to detrimental biofilm) and mitigate biofouling in water treatment and distribution systems.1Licence not specifiedover 2 years ago
- Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.1Licence not specifiedover 2 years ago
- NREL Modular Ocean Instrumentation System (MOIS) data files for the Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).1Licence not specifiedover 2 years ago
- Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.1Licence not specifiedover 2 years ago
- This data set includes one trial of above and under water motion tracking measurements from a Qualysis motion tracking system. The Qualisys native .qtm file can be opened by the Qualisys Track Manager software. Data from this file has been exported to a tab separated value (.tsv) file which is a generic ASCII file format that can be read by a text editor, MATLAB, Excel, etc... Also exported is a native MATLAB formatted file (.mat) which can be loaded directly into MATLAB. The trial is from a three body wave energy converter device, using the underwater system for the central nacelle data, and above water system for the fore and aft floats.1Licence not specifiedover 2 years ago
- This file contains unprocessed drilling data tests on Sierra White Granite (SWG) using two new PDC bits. The tests were conducted at Sandia National Laboratories (SNL) in the Hard Rock Drilling Facility (HRDF). The collected data includes ROP data at rotational speeds of 80, 120, and 160 RPMs, with incremental weight on bit (WOB) up to 5100 lbs. The diameter of the 4-bladed and 5-bladed PDC bits was 3 3/4" and supplied by National Oilwell Varco (NOV). Five tests modes were conducted for both bits, which are as follow: (1) Rigid configuration, with no vibration compliance (2) Flywheel configuration (3) Torsional compliance configuration (4) Axial Compliance configuration (5) Combined Axial and Torsional compliance configuration Note: the WOB and torque in the drilling data should be calibrated by zeroing the WOB and torque when the drill bit tags the rock sample.1Licence not specifiedover 2 years ago
- NREL Modular Ocean Instrumentation System (MOIS) data files for the Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).1Licence not specifiedover 2 years ago
- Images of core samples collected from Utah FORGE well 16A(78)-32. These images were created by stitching together multiple photographs resulting in a circumferential view of the cores exterior in two dimensions. Core footages (measured depths) are indicated in the file names, and are annotated on each image. The images, of which there are 30 in the .zip file, are in a .jpg format.1Licence not specifiedover 2 years ago
- Includes test data from Confined Brazilian Tests. The tests were aim at investigating the rock failure envelope of four different lithologies including Indiana limestone, Scioto sandstone, Grey Berea sandstone, and Tennessee sandstone. Tables include the strength data obtained using load and damage controlled Brazilian tests on the six lithologies. Confine Brazilian tests are preformed by wrapping a sample in a copper jacket so that the confining fluid does not directly interact with the sample. Then a constant confining pressure is applied to the fluid to create a state of triaxial stress in the disc such that the disc center is under three nonzero and unequal principal stress components. By increasing the confining pressure, the least principal stress changes from tensile to compressive so that rock failure can be investigated over a wide range of stress conditions.1Licence not specifiedover 2 years ago
- This dataset includes updated temperature and pressure logs for Utah FORGE wells 56-32, 78-32, and 58-32. This data was acquired in June 2021.1Licence not specifiedover 2 years ago
- This is a composite raw gravity dataset of the Utah FORGE area taken over time from December 2018 to to June 2021. The data shows differences in local gravity at different location across Utah FORGE. Included with the gravity data is the NAD83 UTM coordinates of each station in meters. More detailed information can be found in the readme included in the data resource.1Licence not specifiedover 2 years ago
- Contains the Reference Model 5 (RM5) spreadsheets with the cost breakdown structure (CBS) for the levelized cost of energy (LCOE) calculations for a single RM5 device and multiple unit arrays. These spreadsheets are contained within an XLSX file and a spreadsheet editor such as Microsoft Excel is needed to open the file. This data was generated upon completion of the project on September 30, 2014. The Reference Model Project (RMP), sponsored by the U.S. Department of Energy (DOE), was a partnered effort to develop open-source MHK point designs as reference models (RMs) to benchmark MHK technology performance and costs, and an open-source methodology for design and analysis of MHK technologies, including models for estimating their capital costs, operational costs, and levelized costs of energy. The point designs also served as open-source test articles for university researchers and commercial technology developers. The RMP project team, led by Sandia National Laboratories (SNL), included a partnership between DOE, three national laboratories, including the National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL), and Oak Ridge National Laboratory (ORNL), the Applied Research Laboratory of Penn State University, and Re Vision Consulting. Reference Model 5 (RM5) is a type of floating, oscillating surge wave energy converter (OSWEC) that utilizes the surge motion of waves to generate electrical power. The reference wave energy resource for RM5 was measurement data from a National Data Buoy Center (NDBC) buoy near Eureka, in Humboldt County, California. The flap was designed to rotate against the supporting frame to convert wave energy into electrical power from the relative rotational motion induced by incoming waves. The RM5 design is rated at 360 kilowatts (kW), uses a flap of 25 m in width and 19 m in height (16 m in draft), and the distance from the top of the water surface piercing flap to the mean water surface (freeboard) is 1.5 m. The flap is connected to a shaft with a 3-m diameter that rotates against the supporting frame. The supporting frame is assumed to have an outer diameter of 2 m, and the total length of the device structure is 45 m. The RM5 OSWEC was designed for deep-water deployment, at depths between 50 m and 100 m, and was tension-moored to the seabed.1Licence not specifiedover 2 years ago
- Contains the Reference Model 1 (RM1) full scale geometry files of the Tidal Current Turbine, developed by the Reference Model Project (RMP). These full scale geometry files are saved as SolidWorks assembly, X_T, IGS, and STEP files, and require a CAD program to view. This data was generated upon completion of the project on September 30, 2014. The Reference Model Project (RMP), sponsored by the U.S. Department of Energy (DOE), was a partnered effort to develop open-source MHK point designs as reference models (RMs) to benchmark MHK technology performance and costs, and an open-source methodology for design and analysis of MHK technologies, including models for estimating their capital costs, operational costs, and levelized costs of energy. The point designs also served as open-source test articles for university researchers and commercial technology developers. The RMP project team, led by Sandia National Laboratories (SNL), included a partnership between DOE, three national laboratories, including the National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL), and Oak Ridge National Laboratory (ORNL), the Applied Research Laboratory of Penn State University, and Re Vision Consulting. Reference Model 1 (RM1) is a dual variable-speed variable-pitch (VSVP) axial-flow tidal turbine device, designed for the Tacoma Narrows tidal current energy resource site in Puget Sound, Washington. RM1 comprises a monopile foundation and a crossarm assembly to mount the two rotors. The cross-arm assembly is nearly neutrally buoyant so the attached rotors can be recovered and redeployed with a minimal amount of lifting crane capacity; therefore, the design minimizes the handling requirements during deployment and recovery, which reduces overall cost in all O&M activities including access to the power conversion chain (PCC).1Licence not specifiedover 2 years ago
- Contains the Reference Model 2 (RM2) spreadsheets with the cost breakdown structure (CBS) for the levelized cost of energy (LCOE) calculations for a single RM2 device and multiple unit arrays. These spreadsheets are contained within an XLSX file and a spreadsheet editor such as Microsoft Excel is needed to open the file. This data was generated upon completion of the project on September 30, 2014. The Reference Model Project (RMP), sponsored by the U.S. Department of Energy (DOE), was a partnered effort to develop open-source MHK point designs as reference models (RMs) to benchmark MHK technology performance and costs, and an open-source methodology for design and analysis of MHK technologies, including models for estimating their capital costs, operational costs, and levelized costs of energy. The point designs also served as open-source test articles for university researchers and commercial technology developers. The RMP project team, led by Sandia National Laboratories (SNL), included a partnership between DOE, three national laboratories, including the National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL), and Oak Ridge National Laboratory (ORNL), the Applied Research Laboratory of Penn State University, and Re Vision Consulting. Reference Model 2 (RM2) is a variable speed dual-rotor cross-flow river turbine that is deployed at the water?s surface. It was designed for deployment at a reference site modeled after a reach in the Mississippi River near Baton Rouge, Louisiana. The rotors are anchored to a two-pontoon vessel platform. Surface deployment of the turbine minimizes the handling requirements during deployment and recovery and reduces overall costs for all O&M activities, including allowing for easy access to the power conversion chain (PCC). The design (two rotors per platform) also reduces the environmental footprint and associated environmental compliance costs.1Licence not specifiedover 2 years ago
- Contains the Reference Model 5 (RM5) full scale geometry files of the Oscillating Surge Flap, developed by the Reference Model Project (RMP). These full scale geometry files are saved as SolidWorks assembly, IGS, and STEP files, and require a CAD program to view. This data was generated upon completion of the project on September 30, 2014. The Reference Model Project (RMP), sponsored by the U.S. Department of Energy (DOE), was a partnered effort to develop open-source MHK point designs as reference models (RMs) to benchmark MHK technology performance and costs, and an open-source methodology for design and analysis of MHK technologies, including models for estimating their capital costs, operational costs, and levelized costs of energy. The point designs also served as open-source test articles for university researchers and commercial technology developers. The RMP project team, led by Sandia National Laboratories (SNL), included a partnership between DOE, three national laboratories, including the National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL), and Oak Ridge National Laboratory (ORNL), the Applied Research Laboratory of Penn State University, and Re Vision Consulting. Reference Model 5 (RM5) is a type of floating, oscillating surge wave energy converter (OSWEC) that utilizes the surge motion of waves to generate electrical power. The reference wave energy resource for RM5 was measurement data from a National Data Buoy Center (NDBC) buoy near Eureka, in Humboldt County, California. The flap was designed to rotate against the supporting frame to convert wave energy into electrical power from the relative rotational motion induced by incoming waves. The RM5 design is rated at 360 kilowatts (kW), uses a flap of 25 m in width and 19 m in height (16 m in draft), and the distance from the top of the water surface piercing flap to the mean water surface (freeboard) is 1.5 m. The flap is connected to a shaft with a 3-m diameter that rotates against the supporting frame. The supporting frame is assumed to have an outer diameter of 2 m, and the total length of the device structure is 45 m. The RM5 OSWEC was designed for deep-water deployment, at depths between 50 m and 100 m, and was tension-moored to the seabed.1Licence not specifiedover 2 years ago
- Contains the Reference Model 4 (RM4) full scale geometry files of the Ocean Current Turbine, developed by the Reference Model Project (RMP). These full scale geometry files are saved as SolidWorks assembly, IGS, X_T, and STEP files, and require a CAD program to view. This data was generated upon completion of the project on September 30, 2014. The Reference Model Project (RMP), sponsored by the U.S. Department of Energy (DOE), was a partnered effort to develop open-source MHK point designs as reference models (RMs) to benchmark MHK technology performance and costs, and an open-source methodology for design and analysis of MHK technologies, including models for estimating their capital costs, operational costs, and levelized costs of energy. The point designs also served as open-source test articles for university researchers and commercial technology developers. The RMP project team, led by Sandia National Laboratories (SNL), included a partnership between DOE, three national laboratories, including the National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL), and Oak Ridge National Laboratory (ORNL), the Applied Research Laboratory of Penn State University, and Re Vision Consulting. Reference Model 4 (RM4) is a "flying-wing" ocean current turbine concept intended for deployment in the Gulf Stream off the southeast coast of Florida. The RM4 device has four rotors, with a rotorless center nacelle housing the power electronics, attached on a straight wing 120 m long. The device is designed to be submerged ~50 m below the surface and is moored to the seabed. The RM4 uses buoyancy within the wing and the five nacelles to maintain its position in the water column. Each rotor has a diameter of 33 m and has a 1-MW power rating, yielding a total device rated power of 4 MW. The rotors on the left and right side of the wing rotate in opposite directions in order to balance the torque applied to the device. The rotorless center nacelle housing the power electronics serves to condition the power generated by the rotors before it is delivered to the grid.1Licence not specifiedover 2 years ago
- **Overview** Sounding data from Watertank (site of NOAA's High Resolution Doppler Lidar) for comparison with microwave profilers. **Data Quality** Data quality based on RS92 Vaisala quality controls. Data wasa collected with a MW31 Vaisala DigiCORA Sounding System.1Licence not specifiedover 2 years ago
- **Overview** Monitor real-time profiles of virtual temperature (C), wind speed (ms-1), and direction (deg) few km above ground level. **Data Details** Raw files contain radial velocity (ms-1), signal-to-noise ratio (dB), signal power (dB), spectral width (ms-1), and noise amplitude (dB). "W" files contain hourly profiles of wind speed (ms-1) and direction (deg). "T" files contain hourly profiles of virtual temperature (C).1Licence not specifiedover 2 years ago
- **Overview** Monitor real-time profiles of virtual temperature (C), wind speed (ms-1), and direction (deg) few km above ground level. **Data Details** Raw files contain radial velocity (ms-1), signal-to-noise ratio (dB), signal power (dB), spectral width (ms-1), and noise amplitude (dB). "W" files contain hourly profiles of wind speed (ms-1) and direction (deg). "T" files contain hourly profiles of virtual temperature (C).1Licence not specifiedover 2 years ago
- **Overview** fixed scan against southeast sonic of 50m, 100m and 150m and supersite at 60m height **Data Quality** unfiltered data **Uncertainty** raw data **Constraints**1Licence not specifiedover 2 years ago
- **Data Details** UMBC Lidar: Water Tank: lat(40.041) lon(-105) alt(1602) 20150410-20150416 NW Pad: lat(40.051) lon(-105) alt(1578) 20150416-20150428 Visitor's Center: lat(40.045) lon(-105) alt(1587) 20150428 - 201505021Licence not specifiedover 2 years ago
- **Data Details** UMBC Lidar: Water Tank: lat(40.041) lon(-105) alt(1602) 20150410-20150416 NW Pad: lat(40.051) lon(-105) alt(1578) 20150416-20150428 Visitor's Center: lat(40.045) lon(-105) alt(1587) 20150428 - 201505021Licence not specifiedover 2 years ago
- **Overview** fixed scan against southeast sonic of 50m, 100m and 150m and supersite at 60m height **Data Quality** unfiltered data **Uncertainty** raw data **Constraints**1Licence not specifiedover 2 years ago
- **Overview** fixed scan against southeast sonic of 50m, 100m and 150m and supersite at 60m height **Data Quality** unfiltered data **Uncertainty** raw data **Constraints**1Licence not specifiedover 2 years ago
- Subsurface Science, Technology and Engineering Research, and Development (SubTER) Crosscut is a collaboration across the Department of Energy offices involved in research activities in energy production/extraction, subsurface storage, and environmental remediation. This submission contains the edi-format responses of 80 tensor MT soundings taken over the Mineral Mountains of SW Utah by contractor Quantec Geoscience Inc. as part of the SubTER project. It includes contractor png images of the soundings plus the responses computed with two different remote references. There is also a readme text file that contains more information about the dataset.1Licence not specifiedover 2 years ago
- **Overview** Monitor real-time profiles of temperature (K), water vapor (gm-3), relative humidity (%) and liquid water (gm-3) up to 10km. **Data Details** lv0 files contain raw, unprocessed data in engineering units. lv1 files contain real-time brightness temperatures for each channel specified in the configuration file. lv2 files contain records of real-time retrievals of temperature (K), water vapor (gm-3), relative humidity (%) and liquid water (gm-3) profiles.1Licence not specifiedover 2 years ago
- **Overview** Kipp & Zonen Microwave Temperature Profiler (MTP-5) with a 5 min temporal and 50 m vertical resolution.1Licence not specifiedover 2 years ago
- **Data Details** UMBC Lidar: Water Tank: lat(40.041) lon(-105) alt(1602) 20150410-20150416 NW Pad: lat(40.051) lon(-105) alt(1578) 20150416-20150428 Visitor's Center: lat(40.045) lon(-105) alt(1587) 20150428 - 201505021Licence not specifiedover 2 years ago
- **Overview** Monitor real-time profiles of temperature (K), water vapor (gm-3), relative humidity (%) and liquid water (gm-3) up to 10km. **Data Details** lv0 files contain raw, unprocessed data in engineering units. lv1 files contain real-time brightness temperatures for each channel specified in the configuration file. lv2 files contain records of real-time retrievals of temperature (K), water vapor (gm-3), relative humidity (%) and liquid water (gm-3) profiles.1Licence not specifiedover 2 years ago
- **Overview** GOES satellite, WSR-88D radar, sounding balloon, surface weather observation and mesoscale model data from the area within, up, and downstream of the study area for use in event logging procedures and case study investigations.1Licence not specifiedover 2 years ago
- **Overview** This dataset includes large-eddy simulation (LES) output from a convective atmospheric boundary layer (ABL) simulation of observations at the SWIFT tower near Lubbock, Texas on July 4, 2012. The dataset was used to assess the LES models for simulation of canonical convective ABL. The dataset can be used for comparison with other LES and computational fluid dynamics model outputs. **Data Quality** This is model output and no specific data quality procedures were used. **Uncertainty** This is output from a deterministic model. **Constraints** There are no specific constraints.1Licence not specifiedover 2 years ago
- In this project, we will develop a system of computer-assisted, automated workflows to specify, manufacture, and install panelized retrofit systems, focusing particularly on panel joints and interface detailing between the panels and facade openings. The proposed system will substantially decrease the time and expertise required for site-specific design and reduce the required expertise and labor hours from contractors and installers on-site. These reductions in labor effort will thus reduce the disruption to building occupants and the total cost of panelized retrofit projects: two key barriers to retrofit adoption. In addition, the improved dimensional accuracy of on-site measurements and quality of panel fit will increase the energy performance and durability of the retrofits.1Licence not specifiedover 2 years ago
- The overall project objective is to materially decrease the leveled cost of energy (LCOE) of the Columbia Power (CPower) StingRAY utility-scale wave energy converter (WEC). This will be achieved by reducing structural material and manufacturing costs and increasing energy output. In this Project, improving the overall Power-to-Weight ratio (PWR) is accomplished through lowering design margins?allowing for weight reduction and more efficient, cost-effective WEC manufacturing and assembly?and by optimizing mass-related WEC performance parameters, such as center of gravity and system inertia. A mixed materials approach to further structural optimization was developed under this Project and validated with extensive laboratory structural testing. This approach substitutes fiber-reinforced plastic (FRP) for steel where appropriate. The benefits of steel are maintained where most useful, for instance at structural joints where the stiffness of steel is required, and the complex geometry is more readily fabricated with steel. However, there are structural spans whose simple shapes are readily fabricated with mandrel-wound FRP and where significant cost and weight savings can be found. An adhesive, double lap shear joint is used to join the FRP and steel subcomponents.1Licence not specifiedover 2 years ago
- Directional Cooling-Induced Fracturing (DCIF) experiments were conducted on rectangular Westerly granite blocks (width=depth=4.0", height=2.0"). Liquid nitrogen was poured in a small, 1"-diameter copper cup attached to the top of the sample, and the resulting acoustic emissions (AEs) and temperature changes on the surface of the sample were monitored. Several confining stresses were applied bi-axially to the sides of the samples so that the onset of AE activity and the stress applied to the sample were correlated. The obtained AEs were used to determine the microcracking source locations and amplitude, and the associated moment tensors. Included in this submission are the animations of the AE locations and graphics displaying the measured temperature-AE activity changes for different stresses.1Licence not specifiedover 2 years ago
- This data catalog contains information related to the Training Site Analysis for the Geothermica project "DE-risking Exploration of geothermal Plays in magmatic ENvironments (DEEPEN)." The DEEPEN project aims to reduce exploration risk for geothermal fluids in magmatic systems by developing improved an improved framework for interpretation of exploration data using the Play Fairway Analysis (PFA) methodology. The Training Site Analysis performed for DEEPEN leverages existing datasets to develop a customized PFA approach to exploration for multiple geothermal resource types in magmatic systems (conventional hydrothermal resources, supercritical fluid and superheated steam resources, and superhot EGS resources). This data catalog contains links to publicly available data files related to 8 training sites in the United States. US training sites are: the Cascades/Aleutians PFA project; the Hawaii PFA project, the Oregon Cascades PFA project, the Snake River Plain, Idaho PFA project, the Washington State PFA project, Newberry Volcano, Coso Geothermal Field, and the Geysers Geothermal field. This database contains an overview of these training sites, data sources, and links to publicly available exploration datasets. For the five PFA projects, details on exploration data related to PFA components (heat, fluid, permeability, sometimes seal) are provided, including a summary of data weighting methodologies.1Licence not specifiedover 2 years ago
- This library contains g-functions (thermal response functions) for standard, regularly spaced vertical borehole ground heat exchangers. In total, it contains 34, 321 configurations. To permit interpolation, each configuration has g-functions for heights of 24, 48, 96, 192, and 384 m. All the g-functions were calculated with burial depths of 2m, and borehole diameters of 15 to 17.5 cm, depending on height. In configurations with uniform spacing, the spacing between the boreholes is set to 5m, though it can be scaled to other horizontal spacings.1Licence not specifiedover 2 years ago
- **Overview** This dataset is intended to be a public resource for anyone conducting wind turbine noise research. The data in this set contain noise spectra and equivalent sound pressure levels at 11 measurement stations. The dataset also contains wind turbine operational data and meteorological data from a met mast directly upstream of the wind turbine. **Data Quality** Data were filtered to include only observations when wind was blowing from the prevailing wind direction of 285° +/- 15°.1Licence not specifiedover 2 years ago
- This is a microgravity dataset from the Utah FORGE site near Milford, Utah. This composite dataset was updated in October, 2021 and contains data from December 17th, 2018 through September 24th, 2021. The data includes the GPS location of the measurement, date of the measurement, name of the station, relative difference in gravity, and coordinates of the station. This data was generated by the Utah Geological Survey.1Licence not specifiedover 2 years ago
- This is benchmark model for wastewater treatment using an activated sludge process. The activated sludge process is a means of treating both municipal and industrial wastewater. The activated sludge process is a multi-chamber reactor unit that uses highly concentrated microorganisms to degrade organics and remove nutrients from wastewater, producing quality effluent. This model provides pollutant concentrations, mass balance, electricity requirements, and treatment costs. This model will be continuously updated based on the latest data.1Licence not specifiedover 2 years ago
- Non-technical barriers to deploying geothermal electricity projects in the United States can create significant delays and other challenges, leading to higher project risk and costs, lost opportunities to access policy incentives, and ultimately decreased competitiveness against other electricity generation technologies. These non-technical barriers cover multiple aspects of geothermal project development, including land access and permitting as well as other environmental regulations. Interviews were held with relevant stakeholders in California and Nevada to discuss their experiences with land access and permitting approvals for geothermal projects from the perspectives of both regulators and developers.1Licence not specifiedover 2 years ago
- This data set contains the full-resolution and state-level data described in the linked technical report (https://www.nrel.gov/docs/fy18osti/71492.pdf). It can be accessed with the NREL-dsgrid-legacy-efs-api, available on GitHub at https://github.com/dsgrid/dsgrid-legacy-efs-api and through PyPI (pip install NREL-dsgrid-legacy-efs-api). The data format is HDF5. The API is written in Python. This initial dsgrid data set, whose description was originally published in 2018, covers electricity demand in the contiguous United States (CONUS) for the historical year of 2012. It is a proof-of-concept demonstrating the feasibility of reconciling bottom-up demand modeling results with top-down information about electricity demand to create a more detailed description than is possible with either type of data source on its own. The result is demand data that is more highly resolved along geographic, temporal, sectoral, and end-use dimensions as may be helpful for conducting electricity sector-wide "what-if" analysis of, e.g., energy efficiency, electrification, and/or demand flexibility. Although we conducted bottom-up versus top-down validation, the final residuals were significant, especially at higher geographic and temporal resolution. Please see the Executive Summary and/or Section 3 of the report to obtain an understanding of the data set limitations before deciding whether these data are suitable for any particular use case. New dsgrid datasets are under development. Please visit https://www.nrel.gov/analysis/dsgrid.html for the latest information which is also linked in the data resources.1Licence not specifiedover 2 years ago
- This submission contains the final scientific and technical report for the Azura technology demonstration at WETS. Also contained are all test reports as referenced in the final report. All test data from this project may be found under 'Related Datasets' on the MHKDR submission page.1Licence not specifiedover 2 years ago
- NREL Modular Ocean Instrumentation System (MOIS) data files for the Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).1Licence not specifiedover 2 years ago
- NREL Modular Ocean Instrumentation System (MOIS) data files for the Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).1Licence not specifiedover 2 years ago
- NREL Modular Ocean Instrumentation System (MOIS) data files for the Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).1Licence not specifiedover 2 years ago
- Workbooks showing Annualized Energy Production, Cost Breakdown Structure, Levelized Cost of Electricity for DOE Reference Tidal Project 1) Baseline TidGen Power System 2) TidGen Power System with the application of Advanced Controls 3) Advanced TidGen Power System with several enhancements These files are provided as a zipped set. Files are linked together and must be viewed in the same folder.1Licence not specifiedover 2 years ago
- This dataset includes data from the Monterey Bay Aquarium Research Institute (MBARI) wave energy converter (WEC) and a nearby located Sofar Spotter buoy. The Monterey Bay Aquarium Research Institute has developed and deployed a small two-body point absorber wave energy device suitable to autonomous underwater vehicle, sensor system, and even aquaculture farm needs. For more information on the MBARI WEC see the research journal attached in the submission.1Licence not specifiedover 2 years ago
- This submission contains documents that describe the USU Camas-1 test well, drilled in Camas Prairie, Idaho, in Fall 2018 and Fall 2019. The purpose of this well is to validate exploration methodologies of the Snake River Plain (SRP) Play Fairway Analysis (PFA) project.1Licence not specifiedover 2 years ago
- This dataset includes survey data, drilling data, daily reports, summaries of daily operations, and rig photos from the drilling of Utah FORGE well 16A(78)-32, which is a highly deviated deep well. It was completed 60 days ahead of schedule. Rig move in began 10/22/2020 and drilling commenced on 10/30/2020, and total depth was reached on 12/18/2020. Drilling was followed by a diagnostic fracture injection test (DFIT), logging, and circulating casing. The rig was released on 1/12/2021. The upper part of the well was drilled vertically through approximately 4,700 feet of sediments before penetrating into high strength, crystalline granite. The well was deviated at a 65 degree angle from vertical after reaching a depth of 6,000 ft. This angle was maintained for the remainder of the well's trajectory. The well ultimately reached a true vertical depth of 8,559 feet, and a total measured depth of 10,987 feet. Preliminary measurements indicate temperatures at the "toe" of the well will exceed 442 degrees F (228 degrees C). Approximately 74 ft of core of the granitic and metamorphic rocks that will form the FORGE reservoir was also recovered.1Licence not specifiedover 2 years ago
- Understanding the initiation and arrest of earthquakes is one of the long-standing challenges of seismology. Here we report on direct observations of borehole displacement by a meter-sized shear rupture induced by pressurization of metamorphic rock at 1.5 km depth. We observed the acceleration of sliding, followed by fast co-seismic slip and a transient afterslip phase. Total displacements were about 7, 5.5 and 9.5 micrometers, respectively for the observed pre-slip, co-seismic slip and afterslip. The observed pre-slip lasted about 0.4 seconds. Co-seismic slip was recorded by the 1 kHz displacement recording and a 12-component array of 3-C accelerometers sampled at 100 kHz. The observed afterslip is consistent with analytical models of arrest in a velocity-strengthening region and subsequent stress relaxation. The observed slip vector agrees with the activation of a bedding plane within the phyllite, which is corroborated by relocated seismic events that were observed during the later stages of the injection experiment. This submission includes the pressure and deformation data recorded by the SIMFIP probe during the first injection at the 164 ft (50 m) notch of borehole E1-I. The injection was performed on on 05/22/2018 as part of Experiment 1 of the EGS Collab project. This data accompanies a manuscript submitted to GRL, linked in this submission.1Licence not specifiedover 2 years ago
- This project successfully developed methods for numerical modeling of sediment transport phenomena around rigid objects resting on or near the ocean floor. These techniques were validated with physical testing using actual sediment in a large wave tank. These methods can be applied to any nearshore structure, including wave energy devices, surge devices, and hinged flap systems. These techniques can be used to economically iterate on device geometries, lowering the cost to refine designs and reducing time to market. The key takeaway for this project was that the most cost-effective method to reduce sediment transport impact is to avoid it altogether. By elevating device structures lightly off the seabed, sediment particles will flow under and around, ebbing and flowing naturally. This allows sediment scour and accretion to follow natural equalization processes without hydrodynamic acceleration or deceleration effects of artificial structures. This submission includes the final technical report for this DOE project. The objective of this project was to develop a set of analysis tools (hydrodynamics and structural models providing inputs into a sediment model), and use those tools to identify and refine the optimal device geometry for the Delos-Reyes Morrow Pressure Device (DMP), commercialized by M3 Wave LLC as "APEX."1Licence not specifiedover 2 years ago
- Data and code that is not already in a public location that is used in Kilcher, Thomson, Harding, and Nylund (2017) "Turbulence Measurements from Compliant Moorings - Part II: Motion Correction" doi: 10.1175/JTECH-D-16-0213.1. The links point to Python source code used in the publication. All other files are source data used in the publication.1Licence not specifiedover 2 years ago
- Field measurements of mean flow and turbulence parameters at the Kvichak river prior to and after the deployment of ORPC's RivGen hydrokinetic turbine. Data description and turbine wake analysis are presented in the attached manuscript "Wake measurements from a hydrokinetic river turbine" by Guerra and Thomson (recently submitted to Renewable Energy). There are three data sets: NoTurbine (prior to deployment), Not_Operational_Turbine (turbine underwater, but not operational), and Operational_Turbine. The data has been quality controlled and organized into a three-dimensional grid using a local coordinate system described in the paper. All data sets are in Matlab format (.mat). Variables available in the data sets are: qx: X coordinate matrix (m) qy: Y coordinate matrix (m) z : z coordinate vector (m) lat : grid cell latitude (degrees) lon: grid cell longitude (degrees) U : velocity magnitude (m/s) Ux: x velocity (m/s) Vy: y velocity (m/s) W: vertical velocity (m/s) Pseudo_beam.b_i: pseudo-along beam velocities (i = 1 to 4) (m/s) (structure with raw data within each grid cell) beam5.b5: 5th-beam velocity (m/s) (structure with raw data within each grid cell) tke: turbulent kinetic energy (m2/s2) epsilon: TKE dissipation rate (m2/s3) Reynolds stresses: uu, vv, ww, uw, vw (m2/s2) Variables from the Not Operational Turbine data set are identified with _T Variables from the Operational Turbine data set are identified with _TO1Licence not specifiedover 2 years ago
- This submission contains several papers, a final report, descriptions of a theoretical framework for two types of control systems, and descriptions of eight real-time flap load control policies with the objective of assessing the potential improvement of annual average capture efficiency at a reference site on an MHK device developed by Resolute Marine Energy, Inc. (RME). The submission also contains an LCOE model that estimates the performance and related energy cost improvements that each advanced control system might provide and recommendations for improving DOE's LCOE model. The two types of control systems are for wave energy converters which transform data into commands that, in the case of RME's OWSC wave energy converter, provide real-time adjustments to damping forces applied to the prime mover via the power take-off system (PTO). The control theories developed were: 1) Model Predictive Control (MPC) or so-called "non-causal" control whereby sensors deployed seaward of a wave energy converter measure incoming wave characteristics and transmit that information to a data processor which issues commands to the PTO to adjust the damping force to an optimal value; and 2) "Causal" control which utilizes local sensors on the wave energy converter itself to transmit information to a data processor which then issues appropriate commands to the PTO. The two advanced control policies developed by Scruggs and Re Vision were then compared to a simple control policy, Coulomb damping, which was utilized by RME during the two rounds of ocean trials it had conducted prior to the commencement of this project. The project work plan initially included a provision for RME to conduct hardware-in-the-loop (HIL) testing of the data processors and configurations of valves, sensors and rectifiers needed to implement the two advanced control systems developed by Scruggs and Re Vision Consulting but the funding for that aspect of the project was cut at the conclusion of Budget Period 1. Accordingly, more work needs to be done to determine: a) means and feasibility of implementing real-time control; and b) added costs associated with such implementation taking into account estimated effects on system availability in addition to component costs.1Licence not specifiedover 2 years ago
- This data set presents results testing the station keeping abilities of a tethered Seabotix vLBV300 underwater vehicle equipped with an inertial navigation system. These results are from an offshore deployment on April 20, 2016 off the coast of Newport, OR (44.678 degrees N, 124.109 degrees W). During the mission period, the sea state varied between 3 and 4, with an average significant wave height of 1.6 m. The vehicle utilizes an inertial navigation system based on a Gladiator Landmark 40 IMU coupled with a Teledyne Explorer Doppler Velocity Log to perform station keeping at a desired location and orientation.1Licence not specifiedover 2 years ago
- Input data and heave results (unsteady RANS-VOF overset simulations performed in Star-CCM+) for a float with an ellipsoid geometry. Five extreme sea states were considered, as detailed in the conference paper "Application of the Most Likely Extreme Response Method for Wave Energy Converters" by Quon et al. (see resource below). These sea states were extrapolated from conditions near Humboldt Bay, California. Focused waves were generated using the MLER module of the Wave Design Response Toolbox (WDRT) and specified at the inlet boundary conditions. The device was constrained to heave only and a PTO was not modeled.1Licence not specifiedover 2 years ago
- This data was compiled for the 'Early Market Opportunity Hot Spot Identification' project. The data and scripts included were used in the 'MHK Energy Site Identification and Ranking Methodology' Reports (see resources below). The Python scripts will generate a set of results--based on the Excel data files--some of which were described in the reports. The scripts depend on the 'score_site' package, and the score site package depends on a number of standard Python libraries (see the score_site install instructions).1Licence not specifiedover 2 years ago
- Attached are the .cas and .dat files for the Reynolds Averaged Navier-Stokes (RANS) simulation of a single lab-scaled DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. The lab-scaled DOE RM1 is a re-design geometry, based of the full scale DOE RM1 design, producing same power output as the full scale model, while operating at matched Tip Speed Ratio values at reachable laboratory Reynolds number (see attached paper). In this case study the flow field around and in the wake of the lab-scaled DOE RM1 turbine is simulated using Blade Element Model (a.k.a Virtual Blade Model [VBM]) by solving RANS equations coupled with k-\omega turbulence closure model. It should be highlighted that in this simulation the actual geometry of the rotor blade is not modeled. The effect of turbine rotating blades are modeled using the Blade Element Theory. This simulation provides an accurate estimate for the performance of device and structure of it's turbulent far wake. Due to the simplifications implemented for modeling the rotating blades in this model, VBM is limited to capture details of the flow field in near wake region of the device. The required User Defined Functions (UDFs) and look-up table of lift and drag coefficients are included along with the .cas and .dat files.1Licence not specifiedover 2 years ago
- Attached are the .cas and .dat files along with the required User Defined Functions (UDFs) and look-up table of lift and drag coefficients for Reynolds Averaged Navier-Stokes (RANS) simulation of a single full scale DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. In this case study the flow field around and in the wake of the full scale DOE RM1 turbine is simulated using Blade Element Model (a.k.a Virtual Blade Model [VBM]) by solving RANS equations coupled with k-\omega turbulence closure model. It should be highlighted that in this simulation the actual geometry of the rotor blade is not modeled. The effect of turbine rotating blades are modeled using the Blade Element Theory. This simulation provides an accurate estimate for the performance of device and structure of it's turbulent far wake. Due to the simplifications implemented for modeling the rotating blades in this model, VBM is limited to capture details of the flow field in near wake region of the device.1Licence not specifiedover 2 years ago
- NREL Modular Ocean Instrumentation System (MOIS) data files for the Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).1Licence not specifiedover 2 years ago
- NREL Modular Ocean Instrumentation System (MOIS) data files for the Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).1Licence not specifiedover 2 years ago
- NREL Modular Ocean Instrumentation System (MOIS) data files for the Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).1Licence not specifiedover 2 years ago
- The overarching project objective is to demonstrate the feasibility of using an innovative PowerTake-Off (PTO) Module in Columbia Power's utility-scale wave energy converter (WEC). The PTO Module uniquely combines a large-diameter, direct-drive, rotary permanent magnet generator; a patent-pending rail-bearing system; and a corrosion-resistant fiber-reinforced-plastic structure1Licence not specifiedover 2 years ago
- From 2010 to 2015, box core grabs were collected at permanent stations around the Pacific Marine Energy Center - North Energy Test Site (PMEC-NETS) off Newport, Oregon. At each box core station a conductivity, temperature, depth (CTD) cast was conducted. These data include the CTD from the bottom of the cast, sediment grain size analysis, total organic carbon and nitrogen analysis (for the first 3 years only) and macrofaunal organism abundances as retained on a 1 mm mesh sieve. From 2012 to 2015, additional box core grabs were collected around two of the anchors deployed at PMEC-NETS to assess potential changes to sediment conditions and/or organism abundances. From 2013 to 2015, box core samples also were collected in and around the South Energy Test Site (PMEC-SETS). The CTD, grain size, and organism abundances are included. Additionally from 2010 to 2015 beam trawls were conducted at 9 stations (a subset of the box core stations) around PMEC-NETS and CTD casts were conducted before the start of each trawl. Again the CTD data from the bottom of the cast are included. Organism data are fish densities based on the estimated number of meters covered by the trawl. No trawls were conducted at PMEC-SETS.1Licence not specifiedover 2 years ago
- Project baseline levelized cost of energy (LCOE) model for the Centipod WEC containing annual energy production (AEP) data, a cost breakdown structure (CBS), model documentation, and the LCOE content model. This baseline was built for comparison with the resultant LCOE model, built after implementation of the model predictive control (MPC) controller.1Licence not specifiedover 2 years ago
- These files contain the geodatabases related to Brady's Geothermal Field. It includes all input and output files for the Geothermal Exploration Artificial Intelligence. Input and output files are sorted into three categories: raw data, pre-processed data, and analysis (post-processed data). In each of these categories there are six additional types of raster catalogs which are titled Radar, SWIR, Thermal, Geophysics, Geology, and Wells. These inputs and outputs were used with the Geothermal Exploration Artificial Intelligence to identify indicators of blind geothermal systems at the Brady Hot Springs Geothermal Site. The included zip file is a geodatabase to be used with ArcGIS and the tar file is an inclusive database that encompasses the inputs and outputs for the Brady Hot Springs Geothermal Site.1Licence not specifiedover 2 years ago
- The Report is being developed by NREL and the GRC, with financial support from the Geothermal Technologies Office of the U.S. DOE and the GRC. It is intended to provide geothermal policymakers, regulators, developers, researchers, and other stakeholders with up-to-date information reflecting the 2019 geothermal power production and district heating markets in the United States. It will also present analysis of the current state of the U.S. geothermal industry and markets for both the power production and district heating sectors, with special consideration of developing power projects. In addition, the report will evaluate the impact of state and federal policy, present current research on geothermal development, and offer a future outlook for the U.S. geothermal industry. Data for the 2020 report have been compiled from previous GEA reports, the U.S. Energy Information Association, and from a GRC industry survey conducted in 2020 via a questionnaire sent to all known companies operating U.S. geothermal power plants or with projects in development. This presentation is a summary of the U.S. power production and developing project data collected for the 2020 report.1Licence not specifiedover 2 years ago
- Dataset contains MHK Hydrofoils Design and Optimization and CFD Analysis Report for the Aquantis 2.5 MW Ocean Current Generation Device, as well as MHK Hydrofoils Wind Tunnel Test Plan and Checkout Test Report.1Licence not specifiedover 2 years ago
- The 'Machine Learning Approaches to Predicting Induced Seismicity and Imaging Geothermal Reservoir Properties' project looks to apply machine learning (ML) methods to Microearthquake (MEQ) data for imaging geothermal reservoir properties and forecasting seismic events, in order to advance geothermal exploration and safe geothermal energy production. As part of the project, this submission provides data arrays for 149 microearthquakes between the year 2012 and 2013 at the Newberry EGS Site for use with the Deep Learning Algorithm that has been developed. The data provided includes raw waveform data, location data, normalized waveform data, and processed waveform data. Penn State Geothermal Team has shared the following files from the project: - 149 microearthquakes (MEQs) between 2012 and 2013 at Newberry EGS sites, 'Normalized Waveform Inputs.npz' are normalized waveforms. - labels of 149 MEQs: Processed Waveform Inputs.npz - location labels of 149 MEQs: Location Data.npz Note: .npz is the python file format by NumPy that provides storage of array data.1Licence not specifiedover 2 years ago
- This study focuses primarily on the Categorial Exclusions (CX) process and its applicability to geothermal exploration. In this paper, we: - Provide generalized background information on CXs, including previous NEPA reports addressing CXs, the process for developing CXs, and the role of extraordinary circumstances; - Examine the history of the Bureau of Land Management's (BLM) geothermal CXs; - Compare current CXs for oil, gas, and geothermal energy; - Describe bills proposing new statutory CXs; - Examine the possibility of standardizing geothermal CXs across federal agencies; and - Present analysis from the Geothermal NEPA Database and other sources on the potential for new geothermal exploration CXs. As part of this study, we reviewed Environmental Assessments (EAs) conducted in response to 20 geothermal exploration drilling permit applications (Geothermal Drilling Permits or Notices of Intents) since the year 2001, the majority of which are from the last 5 years. All 20 EAs reviewed for this study resulted in a Finding of No Significant Impact (FONSI).1Licence not specifiedover 2 years ago
- This report summarizes the design and execution of a wave tank test of the floating oscillating surge wave energy converter (FOSWEC) in the O.H. Hinsdale Wave Research Laboratory Directional Wave Basin at Oregon State University. This device, which uses two "flaps" that pivot about a central platform when excited by waves, has a natural frequency within the range of the waves by which it is excited. The FOSWEC was originally considered to be a 1:33 scale device, however, for the current tests, no fixed relative scale is used (i.e., the WEC is considered to be scaled for the basin?s wave environment in which it operates). The primary goal of this test was to assess the degree to which previously developed modeling, experimentation, and control design methods could be applied to a broad range of wave energy converter designs. Testing was conducted to identify a dynamic model for the impedance and excitation behavior of the device. Using these models, a series of closed loop tests were conducted using a causal impedance matching controller. This report provides a brief description of the results, as well as a summary of the device and experimental design. The results show that the methods applied to this experimental device perform well and should be broadly applicable. The data collected during testing is compressed into FOSWEC.zip. Please refer to Appendix C (pages 61-63) of the test report for descriptions of each test ID corresponding to the compressed files.1Licence not specifiedover 2 years ago
- Directional Cooling-Induced Fracturing (DCIF) experiments were conducted on a short, cylindrical sample of Westerly granite (diameter = 4 inches, height ~ 2 inches). Liquid nitrogen was poured in a copper cup attached to the top of the sample, and the resulting acoustic emissions (AEs) and temperature changes on the surface of the sample were monitored. The obtained AEs were used to determine the microcracking source locations and amplitude, and the associated moment tensors. Included in this submission is an animation of the AEs, a graphic displaying the temperature changes, and the measured data.1Licence not specifiedover 2 years ago
- This dataset contains all well logs from Utah FORGE well 16A(78)-32. This includes the mud log, Sanvean Technologies logs, and Schlumberger logs. Please see the file descriptions below for information about each log.1Licence not specifiedover 2 years ago
- During the summer field season in 2012, Benthic GeoScience Inc. (Benthic) mobilized under contract with Ocean Renewable Power Company (ORPC) in order to conduct precise geospatial measurements of the seafloor accomplishing a preliminary Site Characterization Study for the ORPC East Forelands Tidal Energy Power Project. This study included a high-density bathymetric survey, acoustic reflective intensity imagery, and an assessment of the physical character of the ORPC East Forelands Tidal Energy Power Project environment. The Multibeam Echosounder (MBES) survey included a large area surrounding the East Forelands of Cook Inlet in the vicinity of Nikiski, Alaska. Included in this submission are the report for the East Forelands Site Characterization Study and the accompanying data from the survey as described below. The digital deliverables from this effort include: - Comprehensive Site Characterization Report (Format: PDF, Ver. 1.1, March 2013) - Comprehensive 3D Fledermaus Presentation (Format: SCENE, Ver. 1.1, March 2013) - Bathymetric Surface (Format: ASCVer. 1, March 2013) - Slope Gradient Surface (Format: ASCVer. 1, March 2013) - Comprehensive Acoustic Intensity Image (Format: TIF/TWFVer. 1, March 2013) - Geologic Seafloor Interpretation Surface (Format: ASCVer. 1.0, March 2013) - Comprehensive Google Earth Presentation (Format: KMZVer. 1.1, March 2013)1Licence not specifiedover 2 years ago
- Data set containing results from constant mean stress - constant Lode angle true triaxial compression tests performed on Castlegate Sandstone. From the test preformed, the bedding plane and the strain type inside the band of sedimentary rocks can be related to stress histories. The goal of these tests are to understand the conditions that lead to localized deformation in porous sandstone which has geotechnical applications such as oil and natural gas production, carbon dioxide sequestration, and hazardous waste storage.1Licence not specifiedover 2 years ago
- This test was conducted at the Chevron Cymric oilfield in the California central valley near Bakersfield. A reflected seismic signal was observed in all three components (x, y, z) of the 3-component Episensor geophone, as well as all phones on the single component array. The arrival time of the reflected seismic signal matches calculations based on a reasonable velocity model (~650 m/s). The seismic data has three channels that are from the 3-C Broadband Episensor, then from 4th -- 12th channels has no data. Channel 13 -- 25 are surface single change vertical geophones. The source of this seismic survey is weight drop. More info could be found from the data header and the attached PPT file.1Licence not specifiedover 2 years ago
- The U.S. Department of Energy's (U.S. DOE) Frontier Observatory for Research in Geothermal Energy (FORGE) is a field laboratory that provides a unique opportunity to develop and test new technologies for characterizing, creating and sustaining Enhanced Geothermal Systems (EGS) in a controlled environment. In 2018, the U.S. DOE selected a site in south-central Utah for the FORGE laboratory. Numerous geoscientific studies have been conducted in the region since the 1970s in support of geothermal development at Roosevelt Hot Springs. A vertical scientific well, 58-32, was drilled and tested to a depth of 2290 m (7515 ft) GL in 2017 on the FORGE site to provide additional characterization of the reservoir rocks. The well encountered a conductive thermal regime and a bottom hole temperature of 199degC (390degF). More than 2000 natural fractures were identified, but measured permeabilities are low, less than 30 micro-darcies. Induced fractures indicate that the maximum horizontal stress trends NNE-SSW, consistent with geologic and well observations from the surrounding area. Approximately 45 m (147 ft) at the base of the well was left uncased. A maximum wellhead pressure of 27.6 MPa (4000 psig) at an injection rate of ~1431 L/min (~9 bpm) was measured during stimulation testing in September 2017. Conventional diagnostic evaluations of the data suggest that hydraulic fracturing and shearing occurred. Estimates of the stress gradient for delta_h_min range from of 16.7 to 17.6 kPa/m (0.74 to 0.78 psi/ft). A gradient of 25.6 kPa/m (1.13psi/ft) was calculated for delta_V. In 2019, the 2017 open-hole stimulation in well 58-32 was repeated with injection rates up to 2385 L/min (15 bpm). Two additional stimulations were conducted in the cased portion of the well; one to stimulate critically stressed fractures and the second to test noncritically stressed fractures. Breakdown of the zone spanning critically-stressed fractures occurred at a surface pressure of approximately 29.0 MPa (4200 psig). Although stimulation of the noncritically stressed fractures was interrupted by failure of the bridge plug beneath the perforated interval, micro-seismic data suggests stimulation of the fractures may have been initiated at a surface pressure of 45.5 MPa (6600 psig). These stimulation results support the conclusion the Mineral Mountains granitoid is an appropriate host for EGS development. Micro-seismicity was monitored during the stimulations using surface and downhole instrumentation. Five seismometers and a nodal array of 150 seismic sensors were deployed on the surface. A Distributed Acoustic Sensing (DAS) cable and a string of 12 geophones were deployed in well 78-32, drilled to a depth of 998 m (3274 ft) GL. A broadband sensor and a high-temperature geophone were deployed in well 68-32, drilled to a depth of 303 m (994 ft) GL. More than 420 micro-seismic events were detected by the geophone string. Other instruments detected fewer events.1Licence not specifiedover 2 years ago
- These resources describe the 3D geophysical inversion modeling of gravity data at the FORGE site near Milford, Utah. FORGE is the Frontier Observatory for Research in Geothermal Energy and the site in Utah has been selected by the U.S. Dept. of Energy for a 5-year R&D program to test technologies for the development of Engineered Geothermal Systems (EGS). 3D modelling of gravity data at the FORGE site is to help characterize the subsurface geologic framework. Specifically, modelling of gravity data in 3D, used in conjunction with rock density measurements and other subsurface geologic information can provide an independent test of an existing 3D geologic model (e.g. Witter et al., 2018). Such an exercise can be useful for reducing uncertainty in 3D geologic models (Witter et al, 2019).1Licence not specifiedover 2 years ago
- This is 2D and 3D seismic reflection data from Utah FORGE reprocessed during Phase 2c. The readme file containing an explanation of the data including data formats, software that can be used, processing, and projection and datum used. The Reprocessing document gives the rationale for reprocessing and shows examples of the improvements that were obtained. For all 3D and 2D data the following datasets were created and output in SEG-Y format: - Unmigrated Time - Prestack Time Migration (PSTM), Unenhanced (UnEnh) and Enhanced (Enh) - Prestack Depth Migration (PSDM), Unenhanced (UnEnh) and Enhanced (Enh) - Velocity Model used for Migration1Licence not specifiedover 2 years ago
- This dataset contains groundwater geochemistry from several wells in North Milford Valley, Utah, in the region of the Utah FORGE project (Phase 2c). Readme file that discusses the data contained in the Excel spreadsheet. Data include GPS coordinates (UTM, Lat-Long), sampling temperature, pH, Li, Na, K, Ca, Mg, SiO2, B, Cl, F, SO4, HCO3, oxygen, and hydrogen isotopes. Analyses were performed at the Utah State Laboratory and the University of Minnesota. The zipped archive includes Excel and csv format spreadsheets, a shapefile map with well locations, and a readme text file with additional information. The zip is updated data from October 2021.1Licence not specifiedover 2 years ago
- The National Renewable Energy Laboratory, Southern Methodist University Geothermal Laboratory, Eastman Chemical, Turbine Air Systems, and the Electric Power Research Institute are evaluating the feasibility of using geothermal heat to improve the efficiency of natural gas power plants. The area of interest is the Eastman Chemical plant in Longview, Texas, which is on the northwestern margin of the Sabine Uplift. Part 2 focus on: 1) Permit report and spreadsheet on Federal, State, and Local agency requirements for a geothermal deep direct-use project in the vicinity of East Texas for Harrison, Gregg, Rusk, and Panola Counties. 2) Evaluation of the Geologic Variability of Travis Peak Formation as a reservoir. 3) Updated Heat Flow Memo with additional references.1Licence not specifiedover 2 years ago
- This submission includes the following: - Field Characteristics: Describes the geological and production field characteristics of sampling sites - Geochemistry of Produced Fluids Idaho-Nevada-New Mexico-Oregon-Utah: Summarizes the all the analytical results for aqueous samples collected from geothermal production wells, hydrocarbon production wells, and hot springs. - Geochemistry of Reservoir Rocks & Calcite Scales Nevada-Utah: Analytical results of trace element analyses of reservoir drill cuttings from Beowawe, Dixie Valley, Roosevelt Hot Springs, Uinta Basin, and Paradox Basin (Aneth field); also includes analyses of Dixie Valley calcite scales and rocks in the Sevier Thermal Belt, Utah. - Lithology and mineralogy of drill cuttings from Beowawe, Dixie Valley and Roosevelt Hot Springs: Lithological and mineralogical characterization of drill cuttings from Beowawe, Dixie Valley and Roosevelt Hot Springs - Geological Settings of Critical Element Mineral Deposits: Brief summary and references regarding the geological settings of critical element mineral deposits1Licence not specifiedover 2 years ago
- The PoroTomo team has completed inverse modeling of the three data sets (seismology, geodesy, and hydrology) individually, as described previously. The estimated values of the material properties are registered on a three-dimensional grid with a spacing of 25 meters between nodes. The material properties are listed an Excel file. Figures show planar slices in three sets: horizontal slices in a planes normal to the vertical Z axis (Z normal), vertical slices in planes perpendicular to the dominant strike of the fault system (X normal), and vertical slices in planes parallel to the dominant strike of the fault system (Y normal). The results agree on the following points. The material is unconsolidated and/or fractured, especially in the shallow layers. The structural trends follow the fault system in strike and dip. The geodetic measurements favor the hypothesis of thermal contraction. Temporal changes in pressure, subsidence rate, and seismic amplitude are associated with changes in pumping rates during the four stages of the deployment in 2016. The modeled hydraulic conductivity is high in fault damage zones. All the observations are consistent with the conceptual model: highly permeable conduits along faults channel fluids from shallow aquifers to the deep geothermal reservoir tapped by the production wells.1Licence not specifiedover 2 years ago
- As part of the geophysical characterization suite for the first EGS Collab tesbed, here are the baseline cross-well seismic data and resultant models. The campaign seismic data have been organized, concatenated with geometry and compressional (P-) & and shear (S-) wave picks, and submitted as SGY files. P-wave data were collected and analyzed in both 2D and 3D, while S-wave data were collected and analyzed in 2D only. Inversion models are provided as point volumes; the volumes have been culled to include only the points within source/receiver array coverage. The full models space volumes are also included, if relevant. An AGU 2018 poster by Linneman et al. is included that provides visualizations/descriptions of the cross-well seismic characterization method, elastic moduli calculations, and images of model inversion results.1Licence not specifiedover 2 years ago
- The EGS Collab SIGMA-V project is a multi-lab and university collaborative research project that is being undertaken at the Sanford Underground Research Facility (SURF) in South Dakota. The project consists of studying stimulation, fluid-flow, and heat transfer processes at a scale of 10-20 m, which is readily amenable to detailed characterization and monitoring. One objective of the project is to establish circulation from injector to producer by hydraulically fracturing the injector. Data generated during these experiments is to be compared with predictions from coupled thermal, hydrological, mechanical, and chemical simulators. One such a simulator, TOUGH2-CSM, has been enhanced in order to simulate EGS Collab SIGMA-V project experiments. These modifications include adding tracers, the capability to model tracer sorption, and an embedded fracture formulation. A set of example problems validate our conservative tracer transport and sorption formulations. We then simulated tracer transport and thermal breakthrough for the first EGS Collab SIGMA-V experiment. This dataset includes the TOUGH2-CSM input and output files associated with the thermal and tracer simulations. A conference paper is included for additional context.1Licence not specifiedover 2 years ago
- Core logs from the EGS Collab project Experiment 1 for the stimulation (Injection) well (E1-I), the Production well (E1-P), and monitoring wells (E1-OT, E1-OB, E1-PST, E1-PSB, E1-PDT, and E1-PDB) on the 4850 Level of SURF (the Sanford Underground Research Facility), single PDF file, 5-ft run intervals. In the monitoring well IDs, "O" indicates that the well is orthogonal to the anticipated fracture plane, "P" indicates that the well is parallel to the anticipated fracture plane, "S" indicates a shallow well, "D" indicates a deep well, "T" refers to top, and "B" refers to bottom. Logs include: experiment number; borehole ID; depth interval; run number; final packed core box number; scribe line (yes/no; red-on-right convention); logging dates; logger initials; as well as sketches of core foliation, folding, and fracturing with additional details and notes on other features of interest.1Licence not specifiedover 2 years ago
- The geocellular model of the Mt. Simon Sandstone was constructed for the University of Illinois at Urbana-Champaign DDU feasibility study. Starting with the initial area of review (18.0 km by 18.1 km [11.2 miles by 11.3 miles]) the boundaries of the model were trimmed down to 9.7 km by 9.7 km (6 miles by 6 miles) to ensure that the model enclosed a large enough volume so that the cones of depression of both the production and injection wells would not interact with each other, while at the same time minimizing the number of cells to model to reduce computational time. The grid-cell size was set to 61.0 m by 61.0 m (200 feet by 200 feet) for 160 nodes in the X and Y directions. Within the model, 67 layers are represented that are parameterized with their sediment/rock properties and petrophysical data. The top surface of the Mt. Simon Sandstone was provided by geologists working on the project, and the average thickness of the formation was taken from the geologic prospectus they provided. An average thickness of 762 m (2500 feet) was used for the Mt. Simon Sandstone, resulting in 60 layers for the model. Petrophysical data was taken from available rotary sidewall core data (Morrow et al., 2017). As geothermal properties (thermal conductivity, specific heat capacity) are closely related to mineralogy, specifically the percentage of quartz, available mineralogical data was assembled and used with published data of geothermal values to determine these properties (Waples and Waples, 2004; Robertson, 1988). The Mt. Simon Sandstone was divided into three separate units (lower, middle, upper) according to similar geothermal and petrophysical properties, and distributed according to available geophysical log data and prevailing interpretations of the depositional/diagenetic history (Freiburg et al. 2016). Petrophysical and geothermal properties were distributed through geostatistical means according to the associated distributions for each lithofacies. The formation temperature was calculated, based on data from continuous temperature geophysical log from a deep well drilled into the Precambrian basement at the nearby Illinois Basin Decatur Project (IBDP) where CO2 is currently being sequestered (Schlumberger, 2012). Salinity values used in the model were taken from regional studies of brine chemistry in the Mt. Simon Sandstone, including for the IBDP (e.g., Panno et al. 2018). After being reviewed by the project's geologists, the model was then passed onto the geological engineers to begin simulations of the geothermal reservoir and wellbores.1Licence not specifiedover 2 years ago
- The geocellular model of the St. Peter Sandstone was constructed for the University of Illinois at Urbana-Champaign DDU feasibility study. Starting with the initial area of review (18.0 km by 18.1 km [11.2 miles by 11.3 miles]) the boundaries of the model were trimmed down to 9.7 km by 9.7 km (6 miles by 6 miles) to ensure that the model enclosed a large enough volume so that the cones of depression of both the production and injection wells would not interact with each other, while at the same time minimizing the number of cells to model to reduce computational time. The grid-cell size was set to 61.0 m by 61.0 m (200 feet by 200 feet) for 160 nodes in the X and Y directions. The top surface of the St. Peter Sandstone was provided by geologists working on the project, and the average thickness of the formation was taken from the geologic prospectus they provided. An average thickness of 68.6 m (225 feet) was used for the St. Peter Sandstone, resulting in 45 layers for the model. Petrophysical data was taken from available rotary sidewall core data (Morrow et al., 2017). As geothermal properties (thermal conductivity, specific heat capacity) are closely related to mineralogy, specifically the percentage of quartz, available mineralogical data was assembled and used with published data of geothermal values to determine these properties (Waples and Waples, 2004; Robertson, 1988). The St. Peter Sandstone was divided into facies according to similar geothermal and petrophysical properties, and distributed according to available geophysical log data and prevailing interpretations of the depositional/diagenetic history (Will et al. 2014). Petrophysical and geothermal properties were distributed through geostatistical means according to the associated distributions for each lithofacies. The formation temperature was calculated, based on data from continuous temperature geophysical log from a deep well drilled into the Precambrian basement at the nearby Illinois Basin Decatur Project (IBDP) where CO2 is currently being sequestered (Schlumberger, 2012). Salinity values used in the model were taken from regional studies of brine chemistry in the St. Peter Sandstone, including for the IBDP (e.g., Panno et al. 2018). After being reviewed by the project's geologists, the model was then passed onto the geological engineers to begin simulations of the geothermal reservoir and wellbores.1Licence not specifiedover 2 years ago
- This submission is a follow-up to Distributed Temperature Sensing (DTS) measurements made in Brady observation well 56-1 during the PoroTomo field experiment conducted in March, 2016. The measurements in this data set were made on August 24, 2018 over an approximately 20 hour period. The fiber-optic cable extends to the bottom of the well at 367 m below the wellhead. Measurements were made with a Silixa XT DTS interrogator configured to continuously record in each file a sixty-second average of stokes and anti-stokes readings on a single channel with a bottom hole U-bend. The 2016 data were collected using a Silixia Ultima with 12.5 cm spatial sampling, whereas the XT spatial sampling interval is 25 cm with a temperature resolution of 0.03 degrees C. Raw, uncalibrated data were converted to a single .MAT file using code provided by Oregon State University's CTEMPs https://ctemps.org/data-processing. The binary Matlab file containing processed Silixa XT data is read using the Matlab statement "load('Brady_25Aug2018_ch1.mat')", which contains the arrays below. Arrays with 2361 rows represent the channels and arrays with 1210 columns represent the one-minute samples.1Licence not specifiedover 2 years ago
- Well 58-32 (previously labeled MU-ESW1) was drilled near Milford Utah during Phase 2B of the FORGE Project to confirm geothermal reservoir characteristics met requirements for the final FORGE site. Well Accord-1 was drilled decades ago for geothermal exploration purposes. While the conditions encountered in the well were not suitable for developing a conventional hydrothermal system, the information obtained suggested the region may be suitable for an enhanced geothermal system. Geophysical well logs were collected in both wells to obtain useful information regarding there nature of the subsurface materials. For the recent testing of 58-32, the Utah FORGE Project contracted with the well services company Schlumberger to collect the well logs.1Licence not specifiedover 2 years ago
- MT is measured in the field by using induction coils to measure the time-varying magnetic source for frequencies between 1000-0.001~Hz, and electric dipoles to measure the Earth's electrical response. Because the magnetic source field is polarized, orthogonal directions of the fields need to be measured to get a complete description of the fields. In all measurements collected for this project, induction coils and electric dipoles were aligned with geomagnetic north and east. MT data were collected at 22 stations with a ZEN 32-bit data logger developed by Zonge International, magnetic fields were measured with ANT-4 induction coils, and electric fields where measured with Ag-AgCl reference electrodes from Borin on 50~m dipoles. The data was collected on a repeating schedule of 10~min at 4096~samples/s and 7 hours and 50 minutes at 256 samples/s over a 20-24 hour period. To convert time series data into the frequency domain and get estimations of the impedance tensor, the processing code BIRRP was used (Chave & Thompson 2004). Simultaneous measurements were used as remote references to reduce noise and bias in the data. Chave, A. D., & Thomson, D. J. 2004. Bounded inuence magnetotelluric response function estimation. Geophys. J. Int., 157, 988-1006.1Licence not specifiedover 2 years ago
- This archive contains seismic shot field records for 10 profiles located in Camas Prairie, Idaho. The eight numbered .sgy files were acquired using a seismic land streamer system with an accelerated weight drop source and 72 geophones. These 10-Hz geophones were mounted on base plates and dragged behind the seismic source. Shots were acquired every 4 meters along the length of lines 500West, 550 West, 600West, 700West, 800West, 900West, 200South and 200North. The objective was to map stratigraphy and structures related to geothermal fluid flow in the upper few hundred meters. A readme file is included with descriptions of individual files. The lines names refer to to roads which are numbered relative to the distance from the county seat (the town of Fairfield) along the the main highways. For example, 500 West implies that this north-south street crosses the main road 5 miles to the west of town. The included geologic, topographic, and aerial maps show the labeled seismic lines, while the regional map shows only the line geometry and regional faulting.1Licence not specifiedover 2 years ago
- The Portland Basin is a prime location to assess the feasibility of DDU-TES because natural geologic conditions provide thermal and hydraulic separation from overlying aquifers that would otherwise sweep away stored heat. Under the Portland Basin, the lower Columbia River Basalt Group (CRBG) aquifers contain brackish water (1,000-10,000 mg/L TDS), indicating low groundwater flow rates and poor connection with the overlying regional aquifer. Further, CRBG lavas tend to have comparatively low thermal conductivity, indicating that the 400-1,000 ft thick CRBG may be an effective thermal barrier to the overlying aquifer. A temporally and spatially limited previous study of a Portland Basin CRBG aquifer demonstrated that the injection of waste heat resulted in an increase in temperature by more than a factor of two, indicating a high potential for storing heat. This data submission includes ASCII grid surfaces for the Portland and Tualatin Basins including a DEM of modern topography, the top of Columbia River Basalt (CRB), the base of CRB, and basement. It also includes three isochore (thickness) maps between these intervals. In addition, there is an ArcGIS attribute table for associated data points, a map of data types used to constrain the top of CRB, and cross-sections, all made using IHS Kingdom Suite, Petrosys PRO, ESRI ArcGIS, and Adobe Illustrator software.1Licence not specifiedover 2 years ago
- The link points to a website at NCEDC to download the full moment tensors inversion software The moment tensor analysis conducted in the current project is based on the full moment tensor model described in Minson and Dreger (2008). The software including source, examples and tutorial can be obtained from ftp://ncedc.org/outgoing/dreger (download file pasi-nov282012.tar.gz). Performance criteria, mathematics and test results are provided by Minson and Dreger (2008), Ford et al. (2008, 2009, 2010, 2012) and Saikia (1994). References: Ford, S., D. Dreger and W. Walter (2008). Source Characterization of the August 6, 2007 Crandall Canyon Mine Seismic Event in Central Utah, Seism. Res. Lett., 79, 637-644. Ford, S. R., D. S. Dreger and W. R. Walter (2009). Identifying isotropic events using a regional moment tensor inversion, J. Geophys. Res., 114, B01306, doi:10.1029/2008JB005743. Ford, S. R., D. S. Dreger and W. R. Walter (2010). Network sensitivity solutions for regional moment tensor inversions, Bull. Seism. Soc. Am., 100, p. 1962-1970. Ford, S. R., W. R. Walter, and D. S. Dreger (2012). Event discrimination using regional moment 665 tensors with teleseismic-P constraints, Bull. Seism. Soc. Am. 102, 867-872. Minson, S. and D. Dreger (2008), Stable Inversions for Complete Moment Tensors, Geophys. J. Int., 174, 585-592. Saikia, C.K. (1994), Modified Frequency-Wavenumber Algorithm for Regional Seismograms using Filons Quadrature: Modeling of Lg Waves in Eastern North America. Geophys. J. Int., 118, 142-158.1Licence not specifiedover 2 years ago
- The subsurface uncertainty at West Virginia University Main Campus is dominated by the uncertainty in the projections of geofluid flowrate in the target formation, the Tuscarora Sandstone. In this paper, three cores from the heterogeneous reservoir, available through West Virginia Geologic and Economic Survey, are analyzed by performing core analysis using CT scanning and permeability measurements via minipermeameter. Additional geological data are collected through cores, published literature, seismic data, and nearby, existing wells to estimate thickness, fracture network configuration and geothermal gradient to minimize the uncertainty of well deliverability. Using these estimated reservoir properties; a 3D conceptual model for the proposed geothermal site is developed. This dataset includes a GRC conference publication along with the data used to produce results explained in the paper including minipermeability measurement data for Preston -119 core and thin section analysis photos and data for Clay-513 core.1Licence not specifiedover 2 years ago
- This submission includes synthetic seismic modeling data for the Push-Pull project at Brady Hot Springs, NV. The synthetic seismic is all generated by finite-difference method regarding different fracture and rock properties.1Licence not specifiedover 2 years ago
- This package contains data and metadata for 2-meter temperature probe survey, gravity, slip dilation, play fairway modeling, and ArcGIS geodatabase resources. This project focused on defining geothermal play fairways and development of a detailed geothermal potential map of a large transect across the Great Basin region (96,000 km2), with the primary objective of facilitating discovery of commercial-grade, blind geothermal fields (i.e. systems with no surface hot springs or fumaroles) and thereby accelerating geothermal development in this promising region.1Licence not specifiedover 2 years ago
- The compressed (.zip) file contains Datawell MK-III Directional Waverider binary and unpacked data files as well as a description of the data and manuals for the instrumentation. The data files are contained in the two directories within the zip file, "Apr_July_2012" and "Jun_Sept_2013". Time series and summary data were recorded in the buoy to binary files with extensions '.RDT' and '.SDT', respectively. These are located in the subdirectories 'Data_Raw' in each of the top-level deployment directories. '.RDT' files contain 3 days of time series (at 1.28 Hz) in 30 minute "bursts". Each '.SDT' file contains summary statistics for the month indicated computed at half-hour intervals for each burst. Each deployment directory also contains a description (in 'File.list') of the Datawell binary data files, and a figure ('Hs_vs_yearday') showing the significant wave height associated with each .RDT file (decoded from the filename). The corresponding unpacked Matlab .mat files are contained in the subdirectories 'Data_Mat'. These files have the extension '.mat' but use the root filename of the source .RDT and .SDT files.1Licence not specifiedover 2 years ago
- This data is from measurements at Admiralty Head, in Admiralty Inlet (Puget Sound) in June of 2014. The measurements were made using Inertial Motion Unit (IMU) equipped ADVs mounted on Tidal Turbulence Mooring's (TTMs). The TTM positions the ADV head above the seafloor to make mid-depth turbulence measurements. The inertial measurements from the IMU allows for removal of mooring motion in post processing. The mooring motion has been removed from the stream-wise and vertical velocity signals (u, w). The lateral (v) velocity has some 'persistent motion contamination' due to mooring sway. Each ttm was deployed with two ADVs. The 'top' ADV head was positioned 0.5m above the 'bottom' ADV head. The TTMs were placed in 58m of water. The position of the TTMs were: ttm01 : (48.1525, -122.6867) ttm01b : (48.15256666, -122.68678333) ttm02b : (48.152783333, -122.686316666) Deployments TTM01b and TTM02b occurred simultaneously and were spaced approximately 50m apart in the cross-stream direction. Units ----- - Velocity data (_u, urot, uacc) is in m/s. - Acceleration (Accel) data is in m/s^2. - Angular rate (AngRt) data is in rad/s. - The components of all vectors are in 'ENU' orientation. That is, the first index is True East, the second is True North, and the third is Up (vertical). - All other quantities are in the units defined in the Nortek Manual. Motion correction and rotation into the ENU earth reference frame was performed using the Python-based open source DOLfYN library (http://lkilcher.github.io/dolfyn/). Details on motion correction can be found there. Additional details on TTM measurements at this site can be found in the included Marine Energy Technology Symposium paper.1Licence not specifiedover 2 years ago
- Graph theory is useful for estimating time-dependent model parameters via weighted least-squares using interferometric synthetic aperture radar (InSAR) data. Plotting acquisition dates (epochs) as vertices and pair-wise interferometric combinations as edges defines an incidence graph. The edge-vertex incidence matrix and the normalized edge Laplacian matrix are factors in the covariance matrix for the pair-wise data. Using empirical measures of residual scatter in the pair-wise observations, we estimate the variance at each epoch by inverting the covariance of the pair-wise data. We evaluate the rank deficiency of the corresponding least-squares problem via the edge-vertex incidence matrix. We implement our method in a MATLAB software package called GraphTreeTA available on GitHub (https://github.com/feigl/gipht). We apply temporal adjustment to the data set described in Lu et al. (2005) at Okmok volcano, Alaska, which erupted most recently in 1997 and 2008. The data set contains 44 differential volumetric changes and uncertainties estimated from interferograms between 1997 and 2004. Estimates show that approximately half of the magma volume lost during the 1997 eruption was recovered by the summer of 2003. Between June 2002 and September 2003, the estimated rate of volumetric increase is (6.2 +/- 0.6) x 10^6 m^3/yr. Our preferred model provides a reasonable fit that is compatible with viscoelastic relaxation in the five years following the 1997 eruption. Although we demonstrate the approach using volumetric rates of change, our formulation in terms of incidence graphs applies to any quantity derived from pair-wise differences, such as wrapped phase or wrapped residuals. Date of final oral examination: 05/19/2016 This thesis is approved by the following members of the Final Oral Committee: Kurt L. Feigl, Professor, Geoscience Michael Cardiff, Assistant Professor, Geoscience Clifford H. Thurber, Vilas Distinguished Professor, Geoscience1Licence not specifiedover 2 years ago
- During the 2013 fiscal year, the National Renewable Energy Laboratory (NREL) developed the Geothermal National Environmental Policy Act (NEPA) Database with funding provided by the U.S. Department of Energy (DOE) Geothermal Technologies Office (GTO). The information in the database was collected in an effort to conduct analyses on NEPA timelines (Young et al., 2014). The database was then made available to the public on OpenEI in an effort to share the data collection effort with others. OpenEI allows information related to geothermal NEPA documents from all federal agencies to be accessed and maintained in a single location so that others can utilize the data for their own analyses and so that the structure and content can be expanded for other uses. This submission includes links to the NEPA Database on OpenEI and in the Regulatory and Permitting Information Desktop (RAPID) Toolkit. Also included are a paper and poster by Young et. al presenting the NEPA Database to the Geothermal Resources Council (GRC).1Licence not specifiedover 2 years ago
- New high-quality tensor MT data at 122 sites, including the vertical magnetic field and utilizing ultra-remote referencing, have been acquired over the Utah FORGE project area. The results will be used to delineate the densities of faults and fractures in crystalline basement rocks, to define the heat sources, and to derive baseline 3D resistivity structure for later MT monitoring of temporal changes in resistivity structure following well stimulation in the EGS reservoir. There are three files here related to Utah FORGE magnetotelluric (MT) data acquisition and processing. The FORGE MT EDIs zip file contains the observed MT responses in industry-standard EDI format. For each site, there is an EDI response file that utilized a local independent reference for noise cancellation, and a file that utilized a distant reference cancelling noise associated with the DC transmission line of the Delta IPP passing down the west side of Milford Valley. These two site files could be merged as appropriate. The FORGE Model Cell Center file contains the model volume of the 3D Forge MT inversion for characterizing the resistivity structure in the project area. It was derived using finite element inversion methodology described in Wannamaker et al, in the attached FORGE Phase3 Geophysics paper, from the MT observation EDI files. It is ASCII format (.dat) and entries are defined at top of the file in a simple x-y-z-Rho listing in UTM coordinates. The element layers drape the topography so the Rho value layers are not purely horizontal slices. This greatly simplifies the listing.1Licence not specifiedover 2 years ago
- The Regulatory and Permitting Information Desktop (RAPID) Toolkit combines the former Geothermal Regulatory Roadmap, National Environmental Policy Act (NEPA) Database, and other resources into a Web-based tool that gives the regulatory and utility-scale geothermal developer communities rapid and easy access to permitting information. RAPID currently comprises five tools: Permitting Atlas, Regulatory Roadmap, Resource Library, NEPA Database, and Best Practices. Because of the huge amount of information involved, RAPID was developed in a wiki platform to allow industry and regulatory agencies to maintain the content in the future so that it continues to provide relevant and accurate information to users. The content was expanded to include regulatory requirements for utility-scale solar, hydropower, and bulk transmission development projects. Going forward, development of the RAPID Toolkit will focus on expanding the capabilities of current tools, developing additional tools, including additional technologies, and continuing to increase stakeholder involvement.1Licence not specifiedover 2 years ago
- This folder contains the GEOPHIRES codes and input files for running the base case scenarios for the six deep direct-use (DDU) projects. The six DDU projects took place during 2017-2020 and were funded by the U.S. Department of Energy Geothermal Technologies Office. They investigated the potential of geothermal deep direct-use at six locations across the country. The projects were conducted by Cornell University, West Virginia University (WVU), University of Illinois (U of IL), Sandia National Laboratory (SNL), Portland State University (PSU), and National Renewable Energy Laboratory (NREL). Four projects (Cornell, WVU, U of IL, SNL) investigated geothermal for direct heating of a local campus or community, the project by PSU considered seasonal subsurface storage of solar heating, and the NREL project investigated geothermal heating for turbine inlet cooling using absorption chillers. To allow comparison of techno-economic results across the six DDU projects, GEOPHIRES simulations were set up and conducted for each project. The GEOPHIRES code was modified for each project to simulate the local application and incorporate project-specific assumptions and results such as reservoir production temperature or financing conditions. The base case input file is included which simulates the base case conditions assumed by each project team. The levelized cost of heat (LCOH) is calculated and matches the base case LCOH reported by the project teams.1Licence not specifiedover 2 years ago
- This presents the results of Phase 1 of the Snake River Plain Play Fairway Analysis project, along with a proposed work for Phase 2. No new data were collected, but we list data sources for our compilation. The Snake River volcanic province (SRP) overlies a thermal anomaly that extends deep into the mantle; it represents one of the highest heat flow provinces in North America. The Yellowstone hotspot continues to feed a magma system that underlies southern Idaho and has produced basaltic volcanism as young as 2000 years old. It has been estimated to host up to 855 MW of potential geothermal power production, most of which is associated with the Snake River Plain volcanic province. Our goals for this Phase 1 study were to: (1) adapt the methodology of Play Fairway Analysis for geothermal exploration to create a formal basis for its application to geothermal systems, (2) assemble relevant data for the SRP from publicly available and private sources, and (3) build a geothermal play fairway model for the SRP and identify the most promising plays, using software tools that are standard in the petroleum industry. Our ultimate goals are to lower the risk and cost of geothermal exploration throughout geothermal industry, and to stimulate the development of new geothermal power resources in Idaho.1Licence not specifiedover 2 years ago
- This package includes data and footage from two rounds of downhole camera surveys performed at the Sanford Underground Research Facility (SURF) on the 4850 level. The exercise was performed once on 25 May 2018 and once on 21 December 2018. On May 25th, the first round was done during fluid injection at the 164-ft stimulation zone in the injection well (E1-I). On December 21st, the second round was carried out during fluid injection at the 142-ft stimulation zone. Prior to the injections, downhole instrumentation was removed from the production well (E1-P) to allow room for the downhole camera system. The water within E1-P was then lifted out by the application of air pressure and the downhole camera system was conveyed into the production well. Finally, the water was injected into E1-I and the camera was used to scan for jetting points, or fluid entry, in E1-P. There is a survey description in this package that further describes the procedure of the survey and the overall results. Additionally, there is a detailed analysis of the surveys in the form of a PowerPoint, which includes animations/visualizations from the camera footage, presents interpretations in detail, and provides some general conclusions. Three animations, along with the two video segments that show the jetting into E1-P, are also provided. The video footage was collected using a GeoVISION Dual-Scan Micro Video Camera, the specs of which are also included in this package as a resource.1Licence not specifiedover 2 years ago
- This data submission includes several data components that were used to develop a conceptual model and power capacity-estimates of two low-temperature geothermal resources that define geothermal prospect A at Hawthorne, Nevada. Data are sourced from a combination of legacy publicly-available data and more recent data acquisition conducted by the US Navy Geothermal Program Office (2008-2013) and the Great Basin Center for Geothermal Energy at the University of Nevada, Reno (2008-2010). Data sets include compiled fluid geochemistry data, down-hole temperature logs for wells in the vicinity of prospect A, 2 meter temperature survey data, temperature-spinner logs acquired in well HWAAD-2A, fracture picks from image log data acquired in wells HWAAD-2 and HWAAD-3, and X-Ray Diffraction (XRD) analyses on cuttings from wells HWAAD-2A and HWAAD-3. These data have been reviewed for errors and inconsistencies, but it is possible that few errors could still remain. The resource conceptual model and power capacity estimates are included in the final report to the US Department of Energy, and are presented in a manuscript by Ayling and Hinz. A link to the manuscript published in Geothermics is linked below in this submission.1Licence not specifiedover 2 years ago
- This submission includes lithology logs for all Fallon FORGE area wells; determined from core, cuttings, and thin section. Wells included are 84-31, 21-31, 82-36, FOH-3D, 62-36, 18-5, 88-24, 86-25, FOH-2, 14-36, 17-16, 34-33, 35A-11, 51A-20, 62-15, 72-7, 86-15, Carson_Strat_1_36-32, and several others. Lithology logs last updated 3/13/2018 with confirmation well 21-31 data, and revisited existing wells. Also included is well logging data for Fallon FORGE 21-31. Well logging data includes daily reports, well logs (drill rate, lithology, fractures, mud losses, minerals, temperature, gases, and descriptions), mud reports, drilling parameter plots, daily mud loss summaries, survey reports, progress reports, plan view maps (easting, northing), and wireline logs (caliper [with GR], triple combo [GR, caliper, SP, resistivity, array induction, density, photoelectric factor, and neutron porosity], array induction with linear correlation [GR, SP, Array Induction, caliper, conductivity], and monopole compression dipole shear [GR, SP, Caliper, sonic porosity, delta-T compressional, and delta-T shear])1Licence not specifiedover 2 years ago
- This archive contains a geology map of the general Roosevelt Hot Springs region, both in PDF and ArcGIS geodatabase formats, that was created as part of the Utah FORGE project.1Licence not specifiedover 2 years ago
- This is the final topical report for the Phase 2B Utah FORGE project, which is located near Roosevelt Hot Springs, Utah. This PDF format report details results associated with the conceptual geologic model, deep well 58-32, rock geomechanics, reservoir temperatures, seismic surveys, seismic monitoring, certainty, and NEPA. The report also provides an overview of all of the deliverables which were used to produce the results and full appendices.1Licence not specifiedover 2 years ago
- This submission includes input and results data from analysis done as part of the Geothermal Technology Office's Geothermal Vision Study (GeoVision). The submission includes data for both analysis of the electricity sector and the heating and cooling sector. For the electricity sector, the submission includes geothermal resource potential and development cost inputs for the ReEDS model and ReEDS model results of projected installed capacity and generation of geothermal and other technologies under the GeoVision scenarios. It also includes results from environmental and social impacts analysis. For the cooling sector, the submission includes geothermal resource potential and development cost inputs for the dGeo model and dGeo model results of economic, market, and deployment potential.1Licence not specifiedover 2 years ago
- The Geothermal Resource Portfolio Optimization and Reporting Technique (GeoRePORT) was developed with funding from the U.S. Department of Energy Geothermal Technologies Office to assist in identifying and pursuing long-term investment strategies through the development of a resource reporting protocol. GeoRePORT provides scientists and nonscientists a comprehensive and quantitative means of reporting: (1) features intrinsic to geothermal sites (project grade) and (2) maturity of the development (project readiness). Because geothermal feasibility is not determined by any single factor (e.g., temperature, permeability, permitting), a site?s project grade and readiness are evaluated on 12 attributes pertaining to geological, technical, or socio-economic feasibility. In this paper, we present case studies showing how GeoRePORT can be used to compare geological, technical, and socio-economic attributes between geothermal systems. The consistent and objective assessment protocols used in GeoRePORT allow for comparison of project attributes across unique locations and geological settings. GeoRePORT case studies presented here outline the geological, socio-economic, and technical features of four individual geothermal sites: Coso, Chena, Dixie Valley, and White Sands Missile Range. The case studies illustrate the usefulness of GeoRePORT in evaluating project risk and return, identifying gaps in reported data, evaluating R&D impact, and gathering insights on successes and failures as applicable to future projects.1Licence not specifiedover 2 years ago
- The submission contains a .xls files consisting of 10 excel sheets, which contain combined list of pressure, saturation, salinity, temperature profiles from the simulation of CO2 push-pull using Brady reservoir model and the corresponding effective compressional and shear velocity, bulk density, and fluid and time-lapse neutron capture cross section profiles of rock at times 0 day (baseline) through 14 days. First 9 sheets (each named after the corresponding CO2 push-pull simulation time) contains simulated pressure, saturation, temperature, salinity profiles and the corresponding effective elastic and neutron capture cross section profiles of rock matrix at the time of CO2 injection. Each sheet contains two sets of effective compressional velocity profiles of the rock, one based on Gassmann and the other based on Patchy saturation model. Effective neutron capture cross section calculations are done using a proprietary neutron cross-section simulator (SNUPAR) whereas for the thermodynamic properties of CO2 and bulk density of rock matrix filled with fluid, a standalone fluid substitution tool by Schlumberger is used. Last sheet in the file contains the bulk modulus of solid rock, which is inverted from the rock properties (porosity, sound speed etc) based on Gassmann model. Bulk modulus of solid rock in turn is used in the fluid substitution.1Licence not specifiedover 2 years ago
- The Geothermal Resource Portfolio Optimization and Reporting Technique (GeoRePORT) was developed with funding from the U.S. Department of Energy Geothermal Technologies Office to assist in identifying and pursuing long-term investment strategies through the development of a resource reporting protocol. GeoRePORT provides scientists and nonscientists a comprehensive and quantitative means of reporting: (1) features intrinsic to geothermal sites (project grade) and (2) maturity of the development (project readiness). Because geothermal feasibility is not determined by any single factor (e.g., temperature, permeability, permitting), a site?s project grade and readiness are evaluated on 12 attributes pertaining to geological, technical, or socio-economic feasibility. In this submission, we present the geological, socio-economic, and technical protocols as well as the spreadsheet template for easy data entry and reporting of the GeoRePORT protocol.1Licence not specifiedover 2 years ago
- This submission includes a gravity data in text format and as a GIS point shapefile and transient electromagnetic (TEM) raw data. Each text file additionally contains location data (UTM Zone 12, NAD83) and elevation (meters) data for that station. The gravity data shapefile was in part downloaded from PACES, University of Texas at El Paso, http://gis.utep.edu/subpages/GMData.html, and in part collected by the Utah Geological Survey (UGS) as part of the DOE GTO supported Utah FORGE geothermal energy project near Milford, Utah. The PACES data were examined and scrubbed to eliminate any questionable data. A 2.67 g/cm^3 reduction density was used for the Bouguer correction. The attribute table column headers for the gravity data shapefile are explained below. There is also metadata attached to the GIS shapefile. name: the individual gravity station name. HAE: height above ellipsoid [meter] NGVD29: vertical datum for geoid [meter] obs: observed gravity ERRG: gravity measurement error [mGal] IZTC: inner zone terrain correction [mGal] OZTC: outer zone terrain correction [mGal] Gfa: free air gravity gSBGA: Bouguer horizontal slab sCBGA: Complete Bouguer anomaly1Licence not specifiedover 2 years ago
- Links to URL's with latest time-series of GPS stations BRAD, BRDY, and BRD1. Files with links to FTP locations of GPS RINEX files archived since last report1Licence not specifiedover 2 years ago
- The current uncertainty in the global supply of rare earth elements (REEs) necessitates the development of novel extraction technologies that utilize a variety of REE source materials. Herein, we examined the techno-economic performance of integrating a biosorption approach into a large-scale process for producing salable total rare earth oxides (TREOs) from various feedstocks. An airlift bioreactor is proposed to carry out a biosorption process mediated by bioengineered rare earth-adsorbing bacteria. Techno-economic assessments were compared for three distinctive categories of REE feedstocks requiring different pre-processing steps. Key parameters identified that affect profitability include REE concentration, composition of the feedstock, and costs of feedstock pretreatment and waste management. Among the 11 specific feedstocks investigated, coal ash from the Appalachian Basin was projected to be the most profitable, largely due to its high-value REE content. Its cost breakdown includes pre-processing (leaching primarily, 77.1%), biosorption (19.4%), and oxalic acid precipitation and TREO roasting (3.5%). Surprisingly, biosorption from the high-grade Bull Hill REE ore is less profitable due to high material cost and low production revenue. Overall, our results confirmed that the application of biosorption to low-grade feedstocks for REE recovery is economically viable.1Licence not specifiedover 2 years ago
- Input and output files used for fault characterization through numerical simulation using iTOUGH2. The synthetic data for the push period are generated by running a forward simulation (input parameters are provided in iTOUGH2 Brady GF6 Input Parameters.txt [InvExt6i.txt]). In general, the permeability of the fault gouge, damage zone, and matrix are assumed to be unknown. The input and output files are for the inversion scenario where only pressure transients are available at the monitoring well located 200 m above the injection well and only the fault gouge permeability is estimated. The input files are named InvExt6i, INPUT.tpl, FOFT.ins, CO2TAB, and the output files are InvExt6i.out, pest.fof, and pest.sav (names below are display names). The table graphic in the data files below summarizes the inversion results, and indicates the fault gouge permeability can be estimated even if imperfect guesses are used for matrix and damage zone permeabilities, and permeability anisotropy is not taken into account.1Licence not specifiedover 2 years ago
- An investment of $0.7M from the Geothermal Technology Office for Phase 2 of Play Fairway Analysis in Washington State improved existing favorability models and increased model confidence. New 1:24,000-scale geological mapping, 15 detailed geophysical surveys, 2 passive seismic surveys, and geochronology collected during this phase were coupled with updated and detailed structural modeling and have significantly improved the conceptual models of three potential blind geothermal systems/plays in Washington State, the St. Helens Shear Zone, Mount Baker, and Wind River Valley. Results of this analysis reveal the presence of commercially viable undiscovered geothermal resources in all three study areas. The analysis additionally provides a clear definition of the geothermal prospects in terms of the essential elements of a functioning geothermal system, the confidence in these assessments, and associated potential and risk of development. This report also includes a proposal to validate the modeling results in highly favorable areas for two main reasons: (1) to develop confidence in the modeling approach that will encourage future development of geothermal resources in Washington State inside and outside of the Phase 2 study areas, and (2) to provide actionable results to the DOE, existing industry partners, newly identified developers, and other renewable-energy stakeholders. The proposed validation activities aim to collect new data that will further the understanding of geothermal resource potential in Washington, as well as substantiate the favorability, confidence, and risk models developed in Phases 1 and 2.1Licence not specifiedover 2 years ago
- ASCII text files containing grid-block name, X-Y-Z location, and multiple parameters from TOUGH2 simulation output of CO2 injection into an idealized single fault representing a dipping normal fault at the Desert Peak geothermal field (readable by GMS). The fault is composed of a damage zone, a fault gouge and a slip plane. The runs are described in detail in the following: Borgia A., Oldenburg C.M., Zhang R., Jung Y., Lee K.J., Doughty C., Daley T.M., Chugunov N., Altundas B, Ramakrishnan T.S., 2017. Carbon Dioxide Injection for Enhanced Characterization of Faults and Fractures in Geothermal Systems. Proceedings of the 42st Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 13-17.1Licence not specifiedover 2 years ago
- This data set is associated with the Nevada Play Fairway project. Excel file 5-Area Chem contains all the major chemistry for the areas sampled in the project. New analyses are in lines 2-30, while older analyses appear below that. Field Data excel file contains both field notes and data with ninety entries showing sixty areas not sampled either because they were to dry, cold, or unable to locate. Thirty sites were sampled and their sample numbers appear in this file corresponding to those in the 5-Area Chemistry file. Excel file 5-Area Geothermometer contains a summary of geothermometers calculated for the new and historical data sets. Scanned field sheets are attached as a pdf.1Licence not specifiedover 2 years ago
- This is a GIS point feature shapefile representing wells, and their temperatures, that are located in the general Utah FORGE area near Milford, Utah. There are also fields that represent interpolated temperature values at depths of 200 m, 1000 m, 2000 m, 3000 m, and 4000 m. in degrees Fahrenheit. The temperature values at specific depths as mentioned above were derived as follows. In cases where the well reached a given depth (200 m and 1, 2, 3, or 4 km), the temperature is the measured temperature. For the shallower wells (and at deeper depths in the wells reaching one or more of the target depths), temperatures were extrapolated from the temperature-depth profiles that appeared to have stable (re-equilibrated after drilling) and linear profiles within the conductive regime (i.e. below the water table or other convective influences such as shallow hydrothermal outflow from the Roosevelt Hydrothermal System). Measured temperatures/gradients from deeper wells (when available and reasonably close to a given well) were used to help constrain the extrapolation to greater depths. Most of the field names in the attribute table are intuitive, however HF = heat flow, intercept = the temperature at the surface (x-axis of the temperature-depth plots) based on the linear segment of the plot that was used to extrapolate the temperature profiles to greater depths, and depth_m is the total well depth. This information is also present in the shapefile metadata.1Licence not specifiedover 2 years ago
- **Overview** Scaled Wind Farm Technology (SWiFT) Facility meteorological tower (MET), turbine, and Technical University of Denmark (DTU) SpinnerLidar data acquired on 20161216 UTC during a neutral atmospheric boundary layer inflow at a single focus distance of 2.5 D (D=27 m). **Data Quality** Data information is provided in uploaded documentation: *SWiFT Wake Steering Instrumentation and Data Processing* (PDF).1Licence not specifiedover 2 years ago
- **Overview** Sequence X: Elevated RPM (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 12 m/s, and yaw angles of ±30° were obtained. The blade pitch angle was 3°. The rotor rotated at 90 RPM. Blade pressure measurements were collected. The five-hole probes were removed and the plugs were installed. Plastic tape 0.03-mm-thick was used to smooth the interface between the plugs and the blade. The teeter dampers were replaced with rigid links, and these two channels were flagged as not applicable by setting the measured values in the data file to –99999.99 Nm. The teeter link load cell was pre-tensioned to 40,000 N. During post-processing, the probe channels were set to read -99999.99. As described in Appendix F, the hydrostatic correction derived for operation at 72 RPM was applied to these data. **Data Details** File naming information can be found in the attached Word document "Sequence X Filename Key", copied from the Phase VI Test Report.1Licence not specifiedover 2 years ago
- **Overview** Scaled Wind Farm Technology (SWiFT) Facility meteorological tower (MET), turbine, and Technical University of Denmark (DTU) SpinnerLidar data acquired on 20161216 UTC during a neutral atmospheric boundary layer inflow at a single focus distance of 2.5 D (D=27 m). **Data Quality** Data information is provided in uploaded documentation: *SWiFT Wake Steering Instrumentation and Data Processing* (PDF).1Licence not specifiedover 2 years ago
- **Overview** Scaled Wind Farm Technology (SWiFT) Facility meteorological tower (MET), turbine, and Technical University of Denmark (DTU) SpinnerLidar data acquired on 20161216 UTC during a neutral atmospheric boundary layer inflow at a single focus distance of 2.5 D (D=27 m). **Data Quality** Data information is provided in uploaded documentation: *SWiFT Wake Steering Instrumentation and Data Processing* (PDF).1Licence not specifiedover 2 years ago
- Raw ADCP (Acoustic Doppler Current Profiler) datasets from acoustic interference surveys with a TRDI Workhorse 300, a Nortek Signature500 and two Signature1000 instruments from August 2020. One Signature 1000 ADCP was deployed for 13 days on a bottom lander in Sequim Bay Inlet, WA. Data from the other three instruments were taken from a survey vessel running transects above the deployed lander.1Licence not specifiedover 2 years ago
- This project aims to enhance survivability of a multi-mode point absorber. Included in this submission are content models providing a system definition and baseline LCOE calculations.1Licence not specifiedover 2 years ago
- **Overview** Sequences S, T, and U: Upwind, No Probes (F); Upwind 2° Pitch (F); Upwind 4° Pitch (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of 0° to 180° were achieved for Sequence S, but the yaw angle remained at 0° for Sequences T and U. The blade tip pitch was 3° for Sequence S, 2° for Sequence T, and 4° for Sequence U. These three sequences were interleaved during testing because the pitch angle change was easily made by the turbine operator. The rotor rotated at 72 RPM. Blade pressure measurements were collected. The five-hole probes were removed and the plugs were installed. Plastic tape 0.03-mm-thick was used to smooth the interface between the plugs and the blade. The teeter dampers were replaced with rigid links, and these two channels were flagged as not applicable by setting the measured values in the data file to -99999.99 Nm. The teeter link load cell was pre-tensioned to 40,000 N. During post-processing, the probe channels were set to read -99999.99. In addition to the standard 30-second campaigns, yaw sweeps were done at 7 m/s and 10 m/s for the Sequence S configuration. These 6-minute campaigns were collected while the yaw drive rotated the turbine 360° at a rate of 1°/s. The file names for these campaigns use the letter designation, followed by two digits for wind speed, followed by YSU, followed by 00. **Data Details** File naming information can be found in the attached Word document "Sequence S Filename Key", copied from the Phase VI Test Report.1Licence not specifiedover 2 years ago
- **Overview** Sequence Q: Dynamic Inflow (P) This sequence was designed to characterize the dynamic inflow variation using the five-hole probes that extend upwind of the leading edge of the blade. This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speeds ranged from 5 m/s to 15 m/s, and data were collected at a 0° yaw angle. The rotor rotated at 72 RPM. Blade and probe pressure measurements were collected. The teeter dampers were replaced with rigid links, and these two channels were flagged as not applicable by setting the measured values in the data file to -99999.99 Nm. The teeter link load cell was pretensioned to 40,000 N. The blade pitch angle was changed from the initial tip pitch angle to the final tip pitch angle at the maximum rate of 67°/s. This angle was maintained for the specified delay time duration. Then the blade was pitched back to the initial pitch angle and held for the specified hold time. This was repeated 20 times. The campaign at 15 m/s was aborted early due to excessive low-speed shaft torque loads. The file length varied depending on the time required to obtain 20 pitch cycles for the specified range of angles. The name convention was the standard format, except for the short campaigns collected to ascertain the functionality of the instrumentation. These points were collected at a 3° pitch angle and use the characters REF in the four digits that normally represent yaw angle. **Data Details** File naming information can be found in the attached Word document "Sequence Q Filename Key", copied from the Phase VI Test Report.1Licence not specifiedover 2 years ago
- **Overview** Sequence O: Sin AOA, Parked (P) This sequence was designed to quantify the blade 3-D unsteady aerodynamic response in the absence of rotational influences by varying blade pitch angle. This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 18.9 m/s to 39.3 m/s, and the yaw angle was 0° throughout the sequence. The rotor was parked with the instrumented blade fixed at 0° azimuth, and the rotor lock was installed (see Appendix A). Blade and probe pressure measurements were collected. The teeter dampers were replaced with rigid links, and these two channels were flagged as not applicable by setting the measured values in the data file to -99999.99 Nm. The teeter link load cell was pre-tensioned to 40,000 N. Sinusoidal angle-of-attack histories were designed to emulate 2-D S809 dynamic data obtained at the OSU wind tunnel (Reuss Ramsey et al. 1995) as well as 1P yawed flow angle-of-attack variations the turbine could be expected to encounter in routine operation. The reduced frequency (K), mean angle of attack (αm), and oscillation amplitude (αω) were computed for each of the five primary span locations. The file lengths varied according to the time required to complete 40 oscillations at the specified frequency. The file name convention used the sequence designation O, followed by two digits for the span location (30, 47, 80, or 95), followed by two digits representing the condition specified in the test matrix, followed by the repetition digit. Due to time constraints, the test conditions corresponding to the 63% span location were eliminated. Test points with a static pitch angle of 3° were collected throughout the sequence to ascertain instrumentation fidelity. **Data Details** File naming information can be found in the attached Word document "Sequence O Filename Key", copied from the Phase VI Test Report.1Licence not specifiedover 2 years ago
- **Overview** Sequence M: Transition Fixed (P) Test sequence M used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 15 m/s. Yaw angles ranged from 0° to 90°. The blade tip pitch was 3°. The rotor rotated at 72 RPM. Blade pressure measurements were collected. The five-hole probes were removed and the plugs were installed. Plastic tape 0.03-mm-thick was used to smooth the interface between the plugs and the blade. The teeter dampers were replaced with rigid links, and these two channels were flagged as not applicable by setting the measured values in the data file to –99999.99 Nm. The teeter link load cell was pre-tensioned to 40,000 N. During post-processing, the probe channels were set to read –99999.99. Zigzag tape was installed near the leading edge of the instrumented blade on both the upper and lower surfaces as described in Appendix K. In addition to the standard 30-second campaigns, yaw sweeps were done at 7 m/s and 10 m/s. These 90-second campaigns were collected while the yaw drive rotated the turbine 90° at a rate of 1°/s. The file names for these campaigns use the letter designation, followed by two digits for wind speed, followed by YSU, followed by 00. **Data Details** File naming information can be found in the attached Word document "Sequence M Filename Key", copied from the Phase VI Test Report.1Licence not specifiedover 2 years ago
- **Overview** Sequence K: Step AOA, Probes (P) This sequence was designed to quantify the 3-D blade static angle-of-attack response in the presence of rotational influences by varying the blade pitch angle. Sequence K used an upwind, rigid turbine with a 0° cone angle. The wind speeds ranged from 6 m/s to 20 m/s, and data were collected at yaw angles of 0° and 30°. The rotor rotated at 72 RPM. Blade and probe pressure measurements were collected. The teeter dampers were replaced with rigid links, and these two channels were flagged as not applicable by setting the measured values in the data file to -99999.99 Nm. The teeter link load cell was pre-tensioned to 40,000 N. The blade pitch angle ramped continuously at 0.18°/s over a wide range of increasing and decreasing pitch angles. A step sequence was also performed. The blade pitch was stepped 5°, the flow was allowed to stabilize, and the pitch angle was held for 8 seconds. Then the pitch angle step was repeated. Again, a wide range of pitch angles was obtained, both increasing and decreasing. The file lengths for this sequence varied from 96 seconds to 6 minutes, depending on the pitch angle range. Some short points were collected at 0° yaw and 3° pitch to verify the functionality of the instrumentation. The file name convention used the initial letter K, followed by two digits specifying wind speed, followed by two digits for yaw angle, followed by RU, RD, or ST, followed by the repetition digit. The angle-of-attack motion was differentiated by RU (ramp up), RD (ramp down), and ST (step down then step up). This sequence is related to sequences L and R. **Data Details** File naming information can be found in the attached Word document "Sequence K Filename Key", copied from the Phase VI Test Report.1Licence not specifiedover 2 years ago
- **Overview** Sequences H, I, and J: Upwind Baseline (F), Upwind Low Pitch (F), Upwind High Pitch (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of –30° to 180° were achieved at low wind speeds, and angles of ±10° were achieved for high wind speeds. The blade tip pitch was 3° for sequence H, 0° for sequence I, and 6° for sequence J. These three sequences were interleaved during testing because the pitch angle change was easily made by the turbine operator. The rotor rotated at 72 RPM. Blade and probe pressure measurements were collected. The teeter dampers were replaced with rigid links, and these two channels were flagged as not applicable by setting the measured values in the data file to –99999.99 Nm. The teeter link load cell was pre-tensioned to 40,000 N. In addition to the standard 30-second campaigns, yaw sweeps were done at 7 m/s and 10 m/s. These 6-minute campaigns were collected while the yaw drive rotated the turbine 360° at a rate of 1°/s. The file names for these campaigns use the letter designation, followed by two digits for wind speed, followed by YS, followed by 000. **Data Details** File naming information can be found in the attached Word document "Sequence I Filename Key", copied from the Phase VI Test Report.1Licence not specifiedover 2 years ago
- Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission. This month's data only covers the period Dec 1-6, 2016. On Dec 7, the Azura was shut down and disconnected in preparation for its Dec 8 removal from the WETS 30 m site. The Azura will be modified and re-deployed in 2017.1Licence not specifiedover 2 years ago
- This spreadsheet identifies various flexibility characteristics for flash and binary geothermal power plants which could potentially facilitate provision of grid services beyond bulk power generation. Characteristics are differentiated between resource characteristics such as metal concentration and plant characteristics such as flow rates of pumps used in flash vs. binary plants.1Licence not specifiedover 2 years ago
- DOE System and LCOE (levelized costs of energy) Content Models completed for a utility-scale Stingray WEC.1Licence not specifiedover 2 years ago
- **Overview** Sequence R: Step AOA, No Probes (P) This sequence was designed to quantify the effect of the five-hole probes on the 3-D blade static angle-of-attack response in the presence of rotational influences by repeating Sequence K without five-hole probes. This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speeds ranged from 6 m/s to 20 m/s, and data were collected at yaw angles of 0° and 30°. The rotor rotated at 72 RPM. Blade pressure measurements were collected. The five-hole probes were removed and the plugs were installed. Plastic tape 0.03-mm-thick was used to smooth the interface between the plugs and the blade. The teeter dampers were replaced with rigid links, and these two channels were flagged as not applicable by setting the measured values in the data file to –99999.99 Nm. The teeter link load cell was pre-tensioned to 40,000 N. During post-processing, the probe channels were set to read –99999.99. The blade pitch angle ramped continuously at 0.18°/s over a wide range of increasing and decreasing pitch angles. A step sequence was also performed. The blade pitch was stepped 5°; the flow was allowed to stabilize; and the pitch angle was held for 5 seconds. Then the pitch angle step was repeated. Again, a wide range of pitch angles was obtained, both increasing and decreasing. The file lengths for this sequence varied from 96 seconds to 6 minutes, depending on the pitch angle range. Some short points were collected at 0° yaw and 3° pitch to ascertain the functionality of the instrumentation and repeatability over time. The file name convention used the initial letter R, followed by two digits specifying wind speed, followed by two digits for yaw angle, followed by RU, RD, or ST, followed by the repetition digit. The angle of attack motion was differentiated by RU (ramp up), RD (ramp down), and ST (step down, then step up). This sequence is related to Sequences K and L. **Data Details** File naming information can be found in the attached Word document "Sequence R Filename Key", copied from the Phase VI Test Report.1Licence not specifiedover 2 years ago
- **Overview** Sequence P: Wake Flow Visualization, Upwind (P) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 15 m/s. Yaw angles of 0° to –60° were achieved. The blade tip pitch was 3°. The rotor rotated at 72 RPM. Blade and probe pressure measurements were collected. The teeter dampers were replaced with rigid links, and these two channels were flagged as not applicable by setting the measured values in the data file to –99999.99 Nm. The teeter link load cell was pre-tensioned to 40,000 N. The aluminum blade tip designed to contain a smoke generator was installed, and counterweights were installed in the non-instrumented blade tip to compensate. The turbine was positioned at the appropriate yaw angle, and the smoke generator was ignited remotely. The campaign duration was 3 minutes for all tests except P1000000, which was 2 minutes. The file name convention was the standard format except for P10000A0, which indicated a 3° pitch angle. File P1000000 used a 12° pitch angle. After these two campaigns were collected, it was determined that all subsequent data should be collected with a 3° pitch angle. Pressure data were not acquired during this sequence, so all associated data values were flagged as not applicable by setting the measured values in the data file to 0.000 Pa. Corresponding pressure data are available from Sequence H for the 3° pitch angle test points. Flow visualization data obtained from wall- and ceiling-mounted video cameras were recorded to videotape. The camera locations and calibration procedures are described in Appendix J. **Data Details** File naming information can be found in the attached Word document "Sequence P Filename Key", copied from the Phase VI Test Report.1Licence not specifiedover 2 years ago
- **Overview** Sequence N: Sin AOA, Rotating (P) This sequence was designed to quantify the blade 3-D unsteady aerodynamic response in the presence of rotational influences by varying blade pitch angle. Test sequence N used an upwind, rigid turbine with a 0° cone angle. The wind speed was 15 m/s, and the yaw angle was 0° throughout the sequence. The rotor rotated at 72 RPM. Blade and probe pressure measurements were collected. The teeter dampers were replaced with rigid links, and these two channels were flagged as not applicable by setting the measured values in the data file to –99999.99 Nm. The teeter link load cell was pre-tensioned to 40,000 N. Sinusoidal angle-of-attack histories were designed to emulate 2-D S809 dynamic data obtained at the Ohio State University (OSU) wind tunnel (Reuss Ramsey et al. 1995) and the 1P yawed flow angle-of-attack variations the turbine could be expected to encounter in routine operation. The reduced frequency (K), mean angle of attack (αm), and oscillation amplitude (αω) were computed for each of the five primary span locations. The file lengths varied according to the time required to complete 40 oscillations at the specified frequency. The file name convention used the sequence designation N, followed by two digits for the span location (30, 47, 63, 80, or 95), followed by two digits representing the condition specified in the test matrix, followed by the repetition digit. Due to time constraints, most of the test conditions corresponding to the 63% span location were eliminated. Test points with a static pitch angle of 3° were collected throughout the sequence to ascertain instrumentation fidelity. **Data Details** File naming information can be found in the attached Word document "Sequence N Filename Key", copied from the Phase VI Test Report.1Licence not specifiedover 2 years ago
- **Overview** Sequence L: Step AOA, Parked (P) This sequence was designed to quantify the 3-D blade static angle-of-attack response in the absence of rotational influences by varying the blade pitch angle. This test sequence used an upwind, rigid turbine with a 0° cone angle. Wind speeds of 20 m/s and 30 m/s were used, and all data were collected at a yaw angle of 0°. The rotor was parked with the instrumented blade fixed at 0° azimuth, and the rotor lock was installed (see Appendix A). Blade and probe pressure measurements were collected. The teeter dampers were replaced with rigid links, and these two channels were flagged as not applicable by setting the measured values in the data file to -99999.99 Nm. The teeter link load cell was pre-tensioned to 40,000 N. The blade pitch angle ramped continuously at 0.18°/s over a wide range of increasing and decreasing pitch angles. A step sequence was also performed. The blade pitch was stepped 5°, the flow was allowed to stabilize, and the pitch angle was held for 8 seconds. Then the pitch angle step was repeated. Again, a wide range of pitch angles was obtained, both increasing and decreasing. The file lengths for this sequence varied from 5 to 10 minutes, depending on the pitch angle range. The file name convention used the initial letter L followed by two digits specifying wind speed, followed by 00 for yaw angle, followed by RU, RD, or ST, followed by the repetition digit. The angle-of-attack motion was differentiated by RU (ramp up), RD (ramp down), and ST (step down, then step up). This sequence is related to sequences K and R. **Data Details** File naming information can be found in the attached Word document "Sequence L Filename Key", copied from the Phase VI Test Report.1Licence not specifiedover 2 years ago
- **Overview** Sequences H, I, and J: Upwind Baseline (F), Upwind Low Pitch (F), Upwind High Pitch (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of –30° to 180° were achieved at low wind speeds, and angles of ±10° were achieved for high wind speeds. The blade tip pitch was 3° for sequence H, 0° for sequence I, and 6° for sequence J. These three sequences were interleaved during testing because the pitch angle change was easily made by the turbine operator. The rotor rotated at 72 RPM. Blade and probe pressure measurements were collected. The teeter dampers were replaced with rigid links, and these two channels were flagged as not applicable by setting the measured values in the data file to –99999.99 Nm. The teeter link load cell was pre-tensioned to 40,000 N. In addition to the standard 30-second campaigns, yaw sweeps were done at 7 m/s and 10 m/s. These 6-minute campaigns were collected while the yaw drive rotated the turbine 360° at a rate of 1°/s. The file names for these campaigns use the letter designation, followed by two digits for wind speed, followed by YS, followed by 000. **Data Details** File naming information can be found in the attached Word document "Sequence J Filename Key", copied from the Phase VI Test Report.1Licence not specifiedover 2 years ago
- **Overview** Sequences H, I, and J: Upwind Baseline (F), Upwind Low Pitch (F), Upwind High Pitch (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of –30 to 180° were achieved at low wind speeds, and angles of ±10° were achieved for high wind speeds. The blade tip pitch was 3° for sequence H, 0° for sequence I, and 6° for sequence J. These three sequences were interleaved during testing because the pitch angle change was easily made by the turbine operator. The rotor rotated at 72 RPM. Blade and probe pressure measurements were collected. The teeter dampers were replaced with rigid links, and these two channels were flagged as not applicable by setting the measured values in the data file to –99999.99 Nm. The teeter link load cell was pretensioned to 40,000 N. In addition to the standard 30-second campaigns, yaw sweeps were done at 7 m/s and 10 m/s. These 6-minute campaigns were collected while the yaw drive rotated the turbine 360° at a rate of 1°/s. The file names for these campaigns use the letter designation, followed by two digits for wind speed, followed by YS, followed by 000. **Data Details** File naming information can be found in the attached Word document "Sequence H Filename Key", copied from the Phase VI Test Report.1Licence not specifiedover 2 years ago
- **Overview** Sequence G: Upwind Teetered (F) Test sequence G used an upwind, teetered turbine with a 0° cone angle. The wind speeds ranged from 5 m/s to 25 m/s. Yaw angles of ±180° were achieved at low wind speeds and angles of ±10° were achieved at the high wind speeds. The blade tip pitch was 3°. The rotor rotated at 72 RPM. Blade and probe pressure measurements were collected. **Data Details** File naming information can be found in the attached Word document "Sequence G Filename Key", copied from the Phase VI Test Report.1Licence not specifiedover 2 years ago
- **Overview** Sequence F: Downwind High Cone (F) This test sequence used a downwind, rigid turbine with an 18° cone angle. The wind speed ranged from 10 m/s to 20 m/s. Excessive inertial loading due to the high cone angle prevented operation at lower wind speeds. Yaw angles of ±20° were achieved. The blade tip pitch was 3°. The rotor rotated at 72 RPM. Blade and probe pressure measurements were collected. The teeter dampers were replaced with rigid links, and these two channels were flagged as not applicable by setting the measured values in the data file to –99999.99 Nm. The teeter link was replaced with a shorter bar so the load cell was not installed during this test. However, the teeter link load cell channel was flagged as not applicable by setting the measured values in the data file to -99999.99 N. **Data Details** File naming information can be found in the attached Word document "Sequence F Filename Key", copied from the Phase VI Test Report.1Licence not specifiedover 2 years ago
- **Overview** Sequences B, C, and D: Downwind Baseline (F), Downwind Low Pitch (F), Downwind High Pitch (F) This test sequence used a downwind, teetered turbine with a 3.4° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of ±180° were achieved at low wind speeds, and yaw angles of -20° to 10° were achieved for high wind speeds. The blade tip pitch was 3° for sequence B, 0° for sequence C, and 6° for sequence D. These three sequences were interleaved during testing because the pitch angle change was easily made by the turbine operator. The rotor rotated at 72 RPM. Blade and probe pressure measurements were collected. **Data Details** File naming information can be found in the attached Word document "Sequence D Filename Key", copied from the Phase VI Test Report.1Licence not specifiedover 2 years ago
- **Overview** Sequence 7: Shroud Operating (P) This test sequence used a downwind, rigid turbine with a 3.4° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Turntable angles from 0° to 30° were achieved, but the yaw error angle was maintained at 0° by adjusting the nacelle yaw. The blade tip pitch was 3°. The rotor rotated at 72 RPM. Blade and probe pressure measurements were collected. The teeter dampers were replaced with rigid links, and these two channels were flagged as not applicable by setting the measured values in the data file to –99999.99 Nm. The teeter link load cell was pre-tensioned to 40,000 N. An airfoil-shaped aluminum shroud was placed on the tower below the 34% span five-hole probe. It extended below the 91% span five-hole probe. The turntable angle was adjusted to position the shroud at various angles relative to the flow, but the turbine yaw error angle was maintained at 0°. Two additional points were collected where the turntable angle was 0°, and the turbine yaw angle was 20° (71000200) or -20° (710M0200). **Data Details** File naming information can be found in the attached Word document "Sequence 7 Filename Key", copied from the Phase VI Test Report.1Licence not specifiedover 2 years ago
- The main objective of the developed software is to reduce the cost per foot during drilling, in other words, optimize the drilling operational parameters in achieving optimum ROP while avoiding critical operational parameters due to either low ROP, drillstring vibration, accelerated cutter wear, or low MSE. The developed software can also be used for post-well analysis to provide insight and lessons learned for future drilling operations. Several functions are available in the software to help the user perform drilling analysis, optimization, and simulation.1Licence not specifiedover 2 years ago
- This is one of the computational fluid dynamics (CFD) simulations. The parameters for the test are in the info.txt file.1Licence not specifiedover 2 years ago
- Contains data from the model validation in the 1D Heat Loss Models to Predict the Aquifer Temperature Profile during Hot/Cold Water Injection Project. The data include two COMSOL models (2D axisymmetric benchmark model and 2D Vinsome model), one python code (1D Vinsome based FEM numerical simulation), one matlab main code (1D Newton analytical solution and all results comparison visualization), and output files generated from the above models.1Licence not specifiedover 2 years ago
- **Overview** Sequences B, C, and D: Downwind Baseline (F), Downwind Low Pitch (F), Downwind High Pitch (F) This test sequence used a downwind, teetered turbine with a 3.4° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of ±180° were achieved at low wind speeds, and yaw angles of -20° to 10° were achieved for high wind speeds. The blade tip pitch was 3° for sequence B, 0° for sequence C, and 6° for sequence D. These three sequences were interleaved during testing because the pitch angle change was easily made by the turbine operator. The rotor rotated at 72 RPM. Blade and probe pressure measurements were collected. **Data Details** File naming information can be found in the attached Word document "Sequence B Filename Key", copied from the Phase VI Test Report.1Licence not specifiedover 2 years ago
- **Overview** Sequences 8 and 9: Downwind Sonics (F,P) and Downwind Sonics Parked (P) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of 0° to 60° were achieved. The blade tip pitch was 3°. The rotor rotated at 72 RPM during Sequence 8, but it was parked during Sequence 9. Blade pressure measurements were collected. The five-hole probes were removed and the plugs were installed. Plastic tape 0.03-mm-thick was used to smooth the interface between the plugs and the blade. The teeter dampers were replaced with rigid links, and these two channels were flagged as not applicable by setting the measured values in the data file to –99999.99 Nm. The teeter link load cell was pre-tensioned to 40,000 N. During post-processing, the probe channels were set to read -99999.99. Sonic anemometers were mounted on a strut downwind of the turbine. The strut was mounted to the T-frame, which was rotated to align the anemometers aft of the 9% and 49% radius locations at hub height. Because of this configuration, the tunnel balance data are considered invalid. Sequence 9 was designed to compare the downwind sonic anemometer readings with the upwind sonic anemometers without interference from the turbine. The rotor was parked with the instrumented blade at 0° azimuth. All pressure measurements obtained in Sequence 9 are invalid because sufficient time for temperature stabilization did not occur, thus all associated data values were flagged as not applicable by setting the measured values in the data file to 0.0000 Pa. This test is further described in Appendix G. **Data Details** File naming information can be found in the attached Word document "Sequence 8 Filename Key", copied from the Phase VI Test Report.1Licence not specifiedover 2 years ago
- **Overview** Sequences B, C, and D: Downwind Baseline (F), Downwind Low Pitch (F), Downwind High Pitch (F) This test sequence used a downwind, teetered turbine with a 3.4° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of ±180° were achieved at low wind speeds, and yaw angles of -20° to 10° were achieved for high wind speeds. The blade tip pitch was 3° for sequence B, 0° for sequence C, and 6° for sequence D. These three sequences were interleaved during testing because the pitch angle change was easily made by the turbine operator. The rotor rotated at 72 RPM. Blade and probe pressure measurements were collected. **Data Details** File naming information can be found in the attached Word document "Sequence C Filename Key", copied from the Phase VI Test Report.1Licence not specifiedover 2 years ago
- **Overview** Sequence 4: Static Pressure Calibration (P) This test sequence used a downwind, teetered turbine with a 3.4° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of 0° to 30° were achieved. The blade tip pitch was 3°. The rotor rotated at 72 RPM. Blade and probe pressure measurements were collected. A static pitot probe was installed on a boom 2.3 m upwind of the nacelle at hub height and connected to the reference side of the Mensor digital differential pressure transducer through the pneumatic rotary coupling. This provided the reference pressure for all blade-mounted pressure transducers, as opposed to the NASA atmospheric pressure reference that was used for all other test sequences. This simulates the pressure system connections used in field measurements where the static pressure was unknown. **Data Details** File naming information can be found in the attached Word document "Sequence 4 Filename Key", copied from the Phase VI Test Report.1Licence not specifiedover 2 years ago
- **Overview** Sequence 6: Shroud Wake Measure (P) This test sequence used a downwind, rigid turbine with a 3.4° cone angle. The wind speeds for this sequence corresponded to subcritical [7 m/s], transitional [15 m/s], and supercritical [20 m/s] Reynolds number regimes for the circular cross-section tower. The yaw angle and blade tip pitch angles were selected to traverse the probe tip across the tower wake while keeping the probe axis approximately parallel to the tunnel centerline. The rotor was parked with the instrumented blade at 180° azimuth. Blade and probe pressure measurements were collected. An airfoil-shaped aluminum shroud was placed on the tower below the 34% span five-hole probe. It extended below the 91% span five-hole probe. The turntable angle was adjusted to position the shroud at various angles relative to the flow. **Data Details** File naming information can be found in the attached Word document "Sequence 6 Filename Key", copied from the Phase VI Test Report.1Licence not specifiedover 2 years ago
- **Overview** Sequence 3: Tower Wake Measure (P) Sequence 3 used a downwind, rigid turbine with a 3.4° cone angle. The wind speeds for this sequence corresponded to subcritical [7 m/s], transitional [15 m/s], and supercritical [20 m/s] Reynolds number regimes for the circular cross-section tower. The yaw angle and blade tip pitch angles were selected to traverse the probe tip across the tower wake, while keeping the probe axis approximately parallel to the tunnel centerline. The rotor was parked with the instrumented blade at 180° azimuth. Blade and probe pressure measurements were collected. **Data Details** File naming information can be found in the attached Word document "Sequence 3 Filename Key", copied from the Phase VI Test Report.1Licence not specifiedover 2 years ago
- This is a CSV spreadsheet containing UTM and Latitude and Longitude coordinates and elevations for Wells 78-32, 78B-32, 56-32, 58-32, 68-32, and 16A(78)-32 and seismic stations BOR1, BOR2, BOR3, FOR1, FOR2, FOR5, FOR6, FOR 7, FOR8, FORK, FORU, FORW, and FORB. These are from a GPS survey conducted by the Utah Geological Survey completed in December, 2021.1Licence not specifiedover 2 years ago
- Resources for MHKDR data submitters and curators, including training videos, step-by-step guides on data submission, and detailed documentation of the MHKDR. The Data Management and Submission Best Practices document also contains API access and metadata schema information for developers interested in harvesting MHKDR metadata for federation or inclusion in their local catalogs.1Licence not specifiedover 2 years ago
- Data files for the NWEI Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate submission.1Licence not specifiedover 2 years ago
- The problem of loss circulation in geothermal wells is inherently challenging due to high temperatures, brittle rocks, and presence of abundant fractures. Because of the inherent challenges in geothermal environments, there are limitations in selecting proper lost circulation materials (LCMs). Traditional LCMs such as calcium carbonates that are commonly used in the oil and gas drilling may be softened and prone to failure during geothermal drilling. Moreover, evaluating the performance of different LCMs for geothermal drilling requires unique testing setups, which is expensive, and complicated to run due to harsh environmental conditions of geothermal systems. Herein, we present a numerical approach to simulate LCM transport and bridging through fractures in downhole conditions. By discrete element methods, each individual particle trajectory, and their interactions with the fluid and surrounding particles are incorporated into the analysis. To validate the model, we used experimental results acquired from a high-temperature flow loop system built specifically for this purpose. We took a further step in this work and considered LCM particles that are made from a shape memory polymer (SMP). These particles start expanding and adhering to each other in downhole conditions. The use of SMP is shown to be advantageous in sealing large fractures (3 mm aperture). We demonstrated how numerical modelling may supplement laboratory tests to show initiation of the bridging process, fracture plugging or even its failure. Using the proposed methodology may significantly reduce the number of experiments needed to find an effective LCM recipe, hence drillers can save time and costs by assessing different LCM systems numerically.1Licence not specifiedover 2 years ago
- The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU) device. This submission includes the test report on the characterization program composite testing and the selected composite structure. ORPC arranged coupon testing of candidate material sets as part of a larger characterization program. The goal of this testing was to down select the candidate material sets and determine failure mechanisms. This was done by testing both dry and saturated material sets and examining the effects of moisture uptake of the coupons mechanical properties. Due to the limitations of this program we were limited to static tensile testing is longitudinal and transverse directions as well as limited tensile fatigue testing with a loading of R=0.1 (tension - tension). This program did however, allow for a larger spread of material sets including a novel hydrophobic resin that was promoted to resist water uptake, optimized for subsea applications. Also included is a technical report on the characterization program, including composite test data, design FMEA for composite structure, material selection, composite design, PFMEA for the composite production process, reliability models, production process control plan and development plan. Materials for Marine Hydrokinetic (MHK) devices need to be evaluated before being utilized on a device with a service life of 20 years. For this reason, and the fact that ORPCs turbines are a complex manufacturing challenge, a composite optimization program is conducted. This program looked at novel material sets, production processes and developed tools to evaluate manufacturing defects and characterize their effect on structural performance over an extended operating time. This report will cover the work done during Budget Period 1 for Task 2 of the Advanced TidGen Power System Project.1Licence not specifiedover 2 years ago
- This data set list the distribution of microbial taxa from three sets of sampling campaigns from unit operations in two large desalination facilities in the US conducted between March and May 2021. The desalination plants include the Claude "Bud" Lewis Carlsbad Desalination Plant in Carlsbad, California and the Seater Desalination facility in Tampa Bay, Florida.1Licence not specifiedover 2 years ago
- The BuildingsBench datasets consist of: - Buildings-900K: A large-scale dataset of 900K buildings for pretraining models on the task of short-term load forecasting (STLF). Buildings-900K is statistically representative of the entire U.S. building stock. - 7 real residential and commercial building datasets for benchmarking two downstream tasks evaluating generalization: zero-shot STLF and transfer learning for STLF. Buildings-900K can be used for pretraining models on day-ahead STLF for residential and commercial buildings. The specific gap it fills is the lack of large-scale and diverse time series datasets of sufficient size for studying pretraining and finetuning with scalable machine learning models. Buildings-900K consists of synthetically generated energy consumption time series. It is derived from the NREL End-Use Load Profiles (EULP) dataset (see link to this database in the links further below). However, the EULP was not originally developed for the purpose of STLF. Rather, it was developed to "...help electric utilities, grid operators, manufacturers, government entities, and research organizations make critical decisions about prioritizing research and development, utility resource and distribution system planning, and state and local energy planning and regulation." Similar to the EULP, Buildings-900K is a collection of Parquet files and it follows nearly the same Parquet dataset organization as the EULP. As it only contains a single energy consumption time series per building, it is much smaller (~110 GB). BuildingsBench also provides an evaluation benchmark that is a collection of various open source residential and commercial real building energy consumption datasets. The evaluation datasets, which are provided alongside Buildings-900K below, are collections of CSV files which contain annual energy consumption. The size of the evaluation datasets altogether is less than 1GB, and they are listed out below: 1. ElectricityLoadDiagrams20112014 2. Building Data Genome Project-2 3. Individual household electric power consumption (Sceaux) 4. Borealis 5. SMART 6. IDEAL 7. Low Carbon London1Licence not specifiedover 2 years ago
- Distributed fiber optic sensing was an important part of the monitoring system for EGS Collab Experiment #2. A single loop of custom fiber package was grouted into the four monitoring boreholes that bracketed the experiment volume. This fiber package contained two multi-mode fibers and four single-mode fibers. These fibers were connected to an array of fiber optic interrogator units, each targeting a different measurement. The distributed temperature system (DTS) consisted of a Silixa XT-DTS unit, connected to both ends of one of the two multi-mode fibers. This system measured absolute temperature along the entire length of fiber for the duration of the experiment at a sampling rate of approximately 10 minutes. This dataset includes both raw data in XML format from the XT-DTS, as well as a processed dataset with the sections of data pertaining only to the boreholes are extracted. We have also included a report that provides all of the relevant details necessary for users to process and interpret the data for themselves. Please read this accompanying report. If, after reading it, there are still outstanding questions, please do not hesitate to contact us. Happy processing.1Licence not specifiedover 2 years ago
- This repository contains online actuator and sensor data and associated meta-data collected during the NAWI-funded seedling project with title: Foundational Control Methods for Water Treatment Systems. For detailed information on each dataset, please check the README included there.1Licence not specifiedover 2 years ago
- The paper was presented at the 46th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 15-17, 2021. In this study, the effectiveness of different additives was evaluated in maintaining drilling fluid rheology at HPHT(high pressure and high temperature) conditions. The additives considered in this investigation are bentonite, xanthan gum (XC), low-viscosity and regular polyanionic cellulose (PAC-L and PAC-R), hydroxyethyl cellulose (HEC), other synthetic polymers and clay such as THERMA-VIS. Fluid samples were prepared in various concentrations and left to hydrate for 20-24 hrs. The rheological analysis was performed under HPHT conditions using a rheometer. Different parameters were considered in the screening, such as temperature, concentration, shear rate, and aging time.1Licence not specifiedover 2 years ago
- In July 2021, a commercial-off-the-shelf hydrophone was deployed in a free-drifting configuration to measure underwater acoustic emissions and characterize a 25 kW-rated tidal turbine at the University of New Hampshire's Living Bridge Project in Portsmouth, New Hampshire. Sampling methods and analysis were performed in alignment with the recently published IEC 62600-40 Technical Specification for acoustic characterization of marine energy converters. Results from this study indicate acoustic emissions from the turbine were below ambient sound levels and therefore did not have a significant impact on the underwater noise levels of the project site. As a component of Pacific Northwest National Laboratory's Triton Field Trials (TFiT) described in a paper published in a Special Issue of Journal of Marine Energy Science and Engineering, this study provides a valuable use case for the IEC 62600-40 Technical Specification framework and further recommendations for cost-effective technologies and methods for measuring underwater noise at future current energy converter project sites. The paper can be accessed in the link bellow.1Licence not specifiedover 2 years ago
- This data set includes the magnetotelluric (MT) data collected from October 21 to November 9, 2016 over the San Emidio geothermal field in Nevada by Quantec Geoscience USA Inc. on behalf of US Geothermal Inc. as part of a project entitled "A Novel Approach to Map Permeability Using Passive Seismic Emission Tomography". This data set includes descriptions of the instrumentation, data acquisition and processing procedures, as well as the final processed data and digital archive formats. A total of 81 MT locations were surveyed (52 profile sites, and 29 MT sites). Data were processed and inspected for quality assurance on site, and reviewed daily by the geophysicist in charge of the project.1Licence not specifiedover 2 years ago
- This dataset includes modeled tidal current velocities, direction and depth at two locations in East and North Forelands (60.716, -151.434 and 61.024, -151.157) near Nikiski and Tyonek, respectively, in Cook Inlet, Alaska. Data from two grid cells were provided by the Pacific Northwest National Laboratory based on a tidal hydrodynamic model that characterized the tidal stream resources in Cook Inlet for a period from May 1 to September 1, 2005 (Wang and Yang 2020). The model grid size had a horizontal spatial resolution of 100 m at East Forelands and 200 m at Tyonek; mean sea level (MSL) depth was 47.9 m and 23.7 m at each respective site, and there were 10 depth bins that ranged in size with the tide from 4.3-5.2 m and 1.9-2.8 m, respectively (Wang and Yang 2020).1Licence not specifiedover 2 years ago
- This dataset includes files used to fit planar fractures through the preliminary earthquake catalogs of the three stages of the April 2022 well 16A(78)-32 stimulation which is linked bellow. These planar features have been used to update the FORGE reference Discrete Fracture Network (DFN) model. The files are provided to encourage other modelers to use additional workflows to find additional/alternative features. To this end, the dataset includes the cleaned earthquake catalog data translated to the FORGE reference model global reference frame, the well trajectory of 16A(78)-32 in those same coordinates, the fit 15 planar features in csv format, and a pdf file with slides illustrating the process used to fit the features. A recorded presentation of this material is available from the October 2022 FORGE Modeling and Simulation Forum which is also linked below.1Licence not specifiedover 2 years ago
- This dataset, compiled by NREL using data from [ABB, the Velocity Suite](http://energymarketintel.com/) and the [U.S. Energy Information Administration dataset 861](http://www.eia.gov/electricity/data/eia861/), provides average residential, commercial and industrial electricity rates with likely zip codes for both investor owned utilities (IOU) and non-investor owned utilities. Note: the files include average rates for each utility (not average rates per zip code), but not the detailed rate structure data found in the [OpenEI U.S. Utility Rate Database](https://openei.org/apps/USURDB/).1Licence not specifiedover 2 years ago
- The U.S. Department of Energy's Enhanced Geothermal System (EGS) Collab project aims to improve our understanding of hydraulic stimulations in crystalline rock for enhanced geothermal energy production through execution of intensely monitored meso-scale experiments. The first experiment was performed at the 4850 ft level of the Sanford Underground Research Facility (SURF), approximately 1.5 km below the surface at Lead, South Dakota. The data reported here were collected by the continuous active-source seismic monitoring (CASSM) system (Ajo-Franklin et al., 2011). This system was permanently installed in the testbed and consisted of 17 piezoelectric sources that were recorded by 2-12 channel hydrophone arrays, 18 3-C accelerometers, and 4 3-C geophones at a Nyquist frequency of 24kHz. The source array was activated in a repeated sequence of shots (each source fired 16 times and stacked into resultant waveforms) for the duration of the experiment (April 25, 2018 - March 7, 2019) with few exceptions. Please see the attached documents describing the source / receiver geometry. The data are available in both seg2 (.dat extension) and segy (.sgy extension) format. Each segy file contains multiple seg2 files.1Licence not specifiedover 2 years ago
- This is an analysis of the pressure falloff in stage 1 fracture stimulation of FORGE well 16A(78)-32. The objective of this research is to understand the information content of the well stimulation data of FORGE Well 16A(78)-32. The Stage 1 step-rate test, a variant of the classic diagnostic fracture injection test (DFIT), contains valuable information about the success of well fracturing and the nature of resulting formation stimulation in the drainage volume of Well 16A(78). The analysis we have provided is based on the classic pressure transient analysis in petroleum reservoirs. The next step in the analysis is to use the information we have discovered in the analysis of tracer flowback data. This set of slides we have provided includes the pressure falloff analysis of the data recorded during stimulation of Stage 1 in injection Well 16A(78)-32 conducted in April of 2022. To honor multiple rate a superposition approach for linear flow regime was applied. The analysis yielded a permeability two orders of magnitude larger than permeability from cores. Our calculated permeability is essentially the effective permeability of micro- and macro-fracture system in the stimulated volume of the Well 16A(78)-32. Another observation is that after using the classic G-function plot, no closure stress was observed. This could suggest that pre-existing natural fractures were reopened during stimulation and yet had no propensity to close in accordance to the poroelastic properties.1Licence not specifiedover 2 years ago
- These datasets can be used to evaluate and benchmark the performance accuracy of Fault Detection and Diagnostics (FDD) algorithms or tools. It contains operational data from simulation, laboratory experiments, and field measurements from real buildings for seven HVAC systems/equipment (rooftop unit, single-duct air handler unit, dual-duct air handler unit, variable air volume box, fan coil unit, chiller plant, and boiler plant). Each dataset includes a .pdf file to document key information necessary to understand the content and scope, multiple csv files containing all the time-series data for faults at different severity levels and one fault-free case, and a ttl file to visualize the data according to BRICK schema. The dataset was created by LBNL, PNNL, NREL, ORNL and Drexel University.1Licence not specifiedover 2 years ago
- Data includes Directional Cooling-Induced Fracturing (DCIF) testing data using westerly granite blocks. This submission includes data from two samples of westerly granite, lab sample 7 and 8. Files contain stress, temperature and acoustic emission data acquired during polyaxial, laboratory testing of westerly granite blocks for each sample. FILES: .tradb -- files containing acoustic emission waveforms; sqlite3 database .pridb -- files containing basic acoustic emission information (no waveforms); sqlite3 database .geom -- geometry of the AE sensor network (ASCII)1Licence not specifiedover 2 years ago
- Data included in this submission support the analysis conducted for the report "Nontechnical Barriers to Geothermal Development" which is linked bellow. These data include information about the power purchase agreements (PPAs) analyzed for the report, inputs and model results for the pro forma economic analysis, and outputs from the regression analysis conducted on PPAs comparing geothermal and other power generation technologies.1Licence not specifiedover 2 years ago
- This submission includes an update to the WHOLESCALESamples2021January.xls file where the strikes and dips initially reported have been corrected to comply with the right hand rule. The updated excel file and a link to the original submission are included in this report. The original submission "WHOLESCALE Catalog of Rock Samples at San Emidio Nevada collected in January 2021" contains information on thirty-six rock samples collected from San Emidio, Nevada during January, 2021 for Subtask 2.3 of the WHOLESCALE project. The following resources include a .zip of rock sample photos taken in the field, a .zip of rock sample photos taken in the laboratory at UW-Madison, and an excel catalog of rock samples with information on sample name, rock type, coordinates of sample location, structural measurements, field notes, observations for plug preparation (e.g., weathering, ability to be cut and cored), and rock descriptions. It should be noted that not every sample was photographed in the field. Names and descriptions of rock formation units are taken from Rhodes et al. (2011). The README.txt file is a description of this submission.1Licence not specifiedover 2 years ago
- This submission includes all the data to support an LCOE baseline assessment for the Resolute Marine Energy (RME) Surge WEC device.1Licence not specifiedover 2 years ago
- The BUTTER Empirical Deep Learning Dataset represents an empirical study of the deep learning phenomena on dense fully connected networks, scanning across thirteen datasets, eight network shapes, fourteen depths, twenty-three network sizes (number of trainable parameters), four learning rates, six minibatch sizes, four levels of label noise, and fourteen levels of L1 and L2 regularization each. Multiple repetitions (typically 30, sometimes 10) of each combination of hyperparameters were preformed, and statistics including training and test loss (using a 80% / 20% shuffled train-test split) are recorded at the end of each training epoch. In total, this dataset covers 178 thousand distinct hyperparameter settings ("experiments"), 3.55 million individual training runs (an average of 20 repetitions of each experiments), and a total of 13.3 billion training epochs (three thousand epochs were covered by most runs). Accumulating this dataset consumed 5,448.4 CPU core-years, 17.8 GPU-years, and 111.2 node-years.1Licence not specifiedover 2 years ago
- Data from the 1/20th wave tank test of the RTI model. Northwest Energy Innovations (NWEI) has licensed intellectual property from RTI, and modified the PTO and retested the 1/20th RTI model that was tested as part of the Wave Energy Prize. The goal of the test was to validate NWEI's simulation models of the model. The test occurred at the University of Maine in Orono (UMO).1Licence not specifiedover 2 years ago
- To prepare for its third phase, the Hawaii Play Fairway project conducted groundwater sampling and analyses in ten locations in the Hawaiian islands, magnetotelluric (MT) and gravity surveys, as well as calculations of 3D subsurface stress due to the weight of the rock underlying the topography of the volcano. The subsurface stresses were used to evaluate the potential for fracture-induced permeability. Inversions of the MT and gravity data produce 3D models of resistivity and density, respectively, on Lanai, across Haleakala's SW rift (Maui), and surrounding Mauna Kea (Hawaii Island). The project developed and applied a new method for incorporating depth information about resistivity, density, and potential for fracture-induced permeability into the statistical method for computing resource probability in these three focus areas. The project then incorporated the new groundwater results with the new geophysical results and the calculations of potential for fracture-induced permeability to produce updated maps of resource probability and confidence. These results were used to identify target sites for exploratory drilling. Spreadsheet information: Each sheet contains data for a particular depth in kilometers. Positive depths are above sea level, and negative below. For more information, go to the Hawaii Groundwater and Geothermal Resources Center website linked in the resources.1Licence not specifiedover 2 years ago
- Data from a Nortek Signature1000 deployed on a lander for 14 days in Aug 2020 in the entrance to Sequim Bay, WA. Raw data were processed using the DOLfYN python package and standardized using the ME Data Pipeline python package, tsdat version 0.2.12. Processed data were partitioned into 24 hour increments and saved in the NETCDF file format.1Licence not specifiedover 2 years ago
- NREL Modular Ocean Instrumentation System (MOIS) data files for the Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).1Licence not specifiedover 2 years ago
- Accurate dynamic energy simulation is important for the design and sizing of district heating and cooling systems with geothermal heat exchange for seasonal energy storage. Current modeling approaches in building and district energy simulation tools typically consider heat conduction through the ground between boreholes without flowing groundwater. While detailed simulation tools for subsurface heat and mass transfer exist, these fall short in simulating above-surface energy systems. To support the design and operation of such systems, the study developed a coupled model including a software package for building and district energy simulation, and software for detailed heat and mass transfer in the subsurface. For the first, it uses the open-source Modelica Buildings Library, which includes dynamic simulation models for building and district energy and control systems. For the heat and mass transfer in the soil, it uses the TOUGH simulator. The TOUGH family of codes can model heat and multi-phase, multi-component mass transport for a variety of fluid systems, as well as chemical reactions, in fractured porous media. The study validated the coupled modeling approach by comparing the simulation results with one from the g-function based ground response model. It then looked into effects when the water table and the regional groundwater flow are considered in the ground, from the perspective of heat exchange between borehole and ground, and the electrical consumption of the district heating and cooling systems. To access the simulation models, please find the links in the submission: -- For coupled approach validation: see model Buildings.Fluid.Geothermal.Borefields.Examples.BorefieldsWithTough and Buildings.Examples.DistrictReservoirNetworks.Examples.Reservoir3Variable_TOUGH from the "Modelica Building Library" resource, branch issue1495_tough_interface, commit a2667c0. -- For the study of the effect of water table: see model Buildings.Examples.DistrictReservoirNetworks.Examples.Reservoir3Variable_TOUGH from he "Modelica Building Library" resource, branch issue1495_tough_interface_moreIO, commit 760de49. -- For the study of the effect of regional groundwater flow: see Buildings.Examples.DistrictReservoirNetworks.Examples.Reservoir3Variable_TOUGH from he "Modelica Building Library" resource, branch issue1495_tough_interface_moreIO_3D, commit c2a2d2a. The coupling interface script "GrounResponse.py" can be found from the above links in the folder Buildings/Resources/Python-Sources. Also, the needed files for TOUGH simulation are in the folder Buildings/Resources/Python-Sources/ToughFiles that can be accessed through the above links. A brief description of these files is given below; detailed specifications for the first three files may be found in the TOUGH3 Users Guide (Jung et al., 2018) https://tough.lbl.gov/documentation/tough-manuals/. (1) INCON - initial conditions for each grid block (2) INFILE - main input file with material properties and control parameters (3) MESH - description of the computational grid (4) readsave - Modelica/TOUGH interface program: read the final output of TOUGH simulation after TOUGH time step and prepare for transfer to Modelica for next Modelica time step (5) readsave.inp - input parameters for program readsave (6) writeincon - Modelica/TOUGH interface program: write the output of Modelica after Modelica time step and prepare for transfer to TOUGH as initial conditions for the next TOUGH step (7) writeincon.inp - input parameters for program writeincon1Licence not specifiedover 2 years ago
- This data set includes the daily drilling reports and Pason data for well 78B-32 and Schlumberger logs acquired after drilling completion. This well was drilled between June 27th and July 31st of 2021. Also included is raw and processed data for a variety of well data metrics including temperature, porosity, density, and sonic data. This data was taken at the Utah FORGE site as part of the Utah FORGE project.1Licence not specifiedover 2 years ago
- Contains the Reference Model 6 (RM6) spreadsheets with the cost breakdown structure (CBS) for the levelized cost of energy (LCOE) calculations for a single RM6 device and multiple unit arrays. These spreadsheets are contained within an XLSX file and a spreadsheet editor such as Microsoft Excel is needed to open the file. This data was generated upon completion of the project on September 30, 2014. The Reference Model Project (RMP), sponsored by the U.S. Department of Energy (DOE), was a partnered effort to develop open-source MHK point designs as reference models (RMs) to benchmark MHK technology performance and costs, and an open-source methodology for design and analysis of MHK technologies, including models for estimating their capital costs, operational costs, and levelized costs of energy. The point designs also served as open-source test articles for university researchers and commercial technology developers. The RMP project team, led by Sandia National Laboratories (SNL), included a partnership between DOE, three national laboratories, including the National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL), and Oak Ridge National Laboratory (ORNL), the Applied Research Laboratory of Penn State University, and Re Vision Consulting. Reference Model 6 (RM6) is a Backward Bent Duct Buoy (BBDB), which is a type of oscillating water column wave energy converter. First proposed by Masuda, the BBDB design is a floating Oscillating Water Column (OWC) device that consists of an air chamber, an L-shaped duct, bow and stern buoyancy modules, and a power take-off (PTO) composed of a Wells air turbine and a generator. This L- shaped device opens to the ocean downstream from the wave propagation direction. Power is produced by the motion of the wave, which causes the ambient pressure in the air chamber to vary thereby forcing air to flow through the Wells turbine. The reference wave energy resource for RM6 was developed from site information collected near Eureka, in Humboldt County, California.1Licence not specifiedover 2 years ago
- Contains the Reference Model 4 (RM4) spreadsheets with the cost breakdown structure (CBS) for the levelized cost of energy (LCOE) calculations for a single RM4 device and multiple unit arrays. These spreadsheets are contained within an XLSX file and a spreadsheet editor such as Microsoft Excel is needed to open the file. This data was generated upon completion of the project on September 30, 2014. The Reference Model Project (RMP), sponsored by the U.S. Department of Energy (DOE), was a partnered effort to develop open-source MHK point designs as reference models (RMs) to benchmark MHK technology performance and costs, and an open-source methodology for design and analysis of MHK technologies, including models for estimating their capital costs, operational costs, and levelized costs of energy. The point designs also served as open-source test articles for university researchers and commercial technology developers. The RMP project team, led by Sandia National Laboratories (SNL), included a partnership between DOE, three national laboratories, including the National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL), and Oak Ridge National Laboratory (ORNL), the Applied Research Laboratory of Penn State University, and Re Vision Consulting. Reference Model 4 (RM4) is a flying-wing ocean current turbine concept intended for deployment in the Gulf Stream off the southeast coast of Florida. The RM4 device has four rotors, with a rotorless center nacelle housing the power electronics, attached on a straight wing 120 m long. The device is designed to be submerged ~50 m below the surface and is moored to the seabed. The RM4 uses buoyancy within the wing and the five nacelles to maintain its position in the water column. Each rotor has a diameter of 33 m and has a 1-MW power rating, yielding a total device rated power of 4 MW. The rotors on the left and right side of the wing rotate in opposite directions in order to balance the torque applied to the device. The rotorless center nacelle housing the power electronics serves to condition the power generated by the rotors before it is delivered to the grid.1Licence not specifiedover 2 years ago
- Lawrence Berkeley National Laboratory (Berkeley Lab) estimates hourly project-level generation data for utility-scale solar projects and hourly county-level generation data for residential and non-residential distributed photovoltaic (PV) systems in the seven organized wholesale markets and 10 additional Balancing Areas. To encourage its broader use, Berkeley Lab has made this data file public here at OEDI, covering the years 2012-2020. The public project-level dataset is updated annually with data from the previous calendar year. For more information about the research project, including a technical report, briefing material, visualizations, and additional data, please visit the project homepage linked in this submission.1Licence not specifiedover 2 years ago
- The 2023 National Offshore Wind data set (NOW-23) is the latest wind resource data set for offshore regions in the United States, which supersedes, for its offshore component, the Wind Integration National Dataset (WIND) Toolkit, which was published about a decade ago and is currently one of the primary resources for stakeholders conducting wind resource assessments in the continental United States. The NOW-23 data set was produced using the Weather Research and Forecasting Model (WRF) version 4.2.1. A regional approach was used: for each offshore region, the WRF setup was selected based on validation against available observations. The WRF model was initialized with the European Centre for Medium Range Weather Forecasts 5 Reanalysis (ERA-5) data set, using a 6-hour refresh rate. The model is configured with an initial horizontal grid spacing of 6 km and an internal nested domain that refined the spatial resolution to 2 km. The model is run with 61 vertical levels, with 12 levels in the lower 300m of the atmosphere, stretching from 5 m to 45 m in height. The MYNN planetary boundary layer and surface layer schemes were used the North Atlantic, Mid Atlantic, Great Lakes, Hawaii, and North Pacific regions. On the other hand, using the YSU planetary boundary layer and MM5 surface layer schemes resulted in a better skill in the South Atlantic, Gulf of Mexico, and South Pacific regions. A more detailed description of the WRF model setup can be found in the WRF namelist files linked at the bottom of this page. For all regions, the NOW-23 data set coverage starts on January 1, 2020. For Hawaii and the North Pacific regions, NOW-23 goes until December 31, 2019. For the South Pacific region, the model goes until 31 December, 2022. For all other regions, the model covers until December 31, 2020. Outputs are available at 5 minute resolution, and for all regions we have also included output files at hourly resolution. The NOW-23 data are provided here as HDF5 files. Examples of how to use the HSDS Service to Access the NOW-23 files are linked below. A list of the variables included in the NOW-23 files is also linked below.1Licence not specifiedover 2 years ago
- Risk Registers for major subsystems of the StingRAY WEC completed in compliance with the DOE Risk Management Framework developed by NREL.1Licence not specifiedover 2 years ago
- Based on the volcano plot developed by Dr. Goldsmith group (Report linked in submission), we utilized DFT (density functional theory) calculations to search for bimetallic materials in the application of catalysts in aqueous nitrate removal. The calculations are conducted via the high-throughput automated workflow package developed by our group (Github linked in submission) using VASP commercial first-principles calculation software.1Licence not specifiedover 2 years ago
- The objectives of the proposed work pertain to building a high power-density and high efficiency device to harness MHK energy by mimicking fish-school kinematics. Vortex Hydro Energy is collaborating with a concept formed and undergone preliminary testing at the University of Michigan to complete this task. This submission contains data from the Marine Hydrodynamics Laboratory tank testing for 1, 2, and 3 cylinders. Tests were run in a 10,000 gallon recirculating tank. Cylinders have a diameter of 0.0889 m and 0.895m long. See "Read Me" for file format explanation and additional details.1Licence not specifiedover 2 years ago
- **Overview** Sequence W: Extended Blade (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 21 m/s, and the yaw angle was held at 0°. The blade pitch angle was 3°. The rotor rotated at 72 RPM. Blade pressure measurements were collected. The five-hole probes were removed and the plugs were installed. Plastic tape 0.03-mm thick was used to smooth the interface between the plugs and the blade. The teeter dampers were replaced with rigid links, and these two channels were flagged as not applicable by setting the measured values in the data file to –99999.99 Nm. The teeter link load cell was pretensioned to 40,000 N. During postprocessing, the probe channels were set to read –99999.99. The standard tip blocks were replaced with blade extensions that created a 5.532-m radius rotor as shown in Appendix A. The extension used the S809 airfoil throughout, and the linear taper of the blade continued along the extension. Note that the blade radius was not changed during post-processing so the pressure tap locations are at the same radial location, but the reference to 30% represents 30% of 5.029 m, not 5.532 m. Throughout this report, references to the blade span are made for the 5.029-m radius, not the 5.532-m radius. **Data Details** File naming information can be found in the attached Word document "Sequence W Filename Key", copied from the Phase VI Test Report.1Licence not specifiedover 2 years ago
- **Overview** Sequence E: Yaw Releases (P) This test sequence used a downwind, rigid turbine with a 3.4° cone angle. The wind speeds ranged from 7 m/s to 17 m/s. Initial yaw angles of ±90° were achieved. The blade tip pitch was 3°. The rotor rotated at 72 RPM. Blade and probe pressure measurements were collected. The teeter dampers were replaced with rigid links, and these two channels were flagged as not applicable by setting the measured values in the data file to –99999.99 Nm. The teeter link load cell was pre-tensioned to 40,000 N. The turbine was positioned at each specified yaw angle. A 30- second data set was collected with the yaw brake engaged. These points used a letter for the last digit beginning with A and proceeding through the alphabet as repeat points were needed. These points were plotted and compared to ascertain the functionality of the instrumentation. The files ending in numbers beginning with 0 and increasing with each repetition represent yaw release points. Once the fixed-position yaw test was complete, the yaw drive was engaged to hold the turbine. The yaw brake was released, and the yaw drive was disabled allowing the turbine to yaw freely. The yaw drive was disabled about 5 seconds into the campaign, and the turbine was allowed to yaw freely for the rest of the 30-second duration. When the yaw drive is disabled, no torque is applied to the motor, and the inertia and yawing force of the nacelle and rotor overcomes the friction and inertia of the yaw gear and motor. The yaw releases were repeated five times at each condition. Four additional campaigns were collected to determine the turbine’s natural yaw error by releasing the brake at 0° yaw error. These file names use the E designation, followed by two digits for wind speed, followed by XXXX, followed by the repetition digit. **Data Details** File naming information can be found in the attached Word document "Sequence E Filename Key", copied from the Phase VI Test Report.1Licence not specifiedover 2 years ago
- **Overview** Sequences S, T, and U: Upwind, No Probes (F); Upwind 2° Pitch (F); Upwind 4° Pitch (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of 0° to 180° were achieved for Sequence S, but the yaw angle remained at 0° for Sequences T and U. The blade tip pitch was 3° for Sequence S, 2° for Sequence T, and 4° for Sequence U. These three sequences were interleaved during testing because the pitch angle change was easily made by the turbine operator. The rotor rotated at 72 RPM. Blade pressure measurements were collected. The five-hole probes were removed and the plugs were installed. Plastic tape 0.03-mm-thick was used to smooth the interface between the plugs and the blade. The teeter dampers were replaced with rigid links, and these two channels were flagged as not applicable by setting the measured values in the data file to -99999.99 Nm. The teeter link load cell was pre-tensioned to 40,000 N. During post-processing, the probe channels were set to read -99999.99. In addition to the standard 30-second campaigns, yaw sweeps were done at 7 m/s and 10 m/s for the Sequence S configuration. These 6-minute campaigns were collected while the yaw drive rotated the turbine 360° at a rate of 1°/s. The file names for these campaigns use the letter designation, followed by two digits for wind speed, followed by YSU, followed by 00. **Data Details** File naming information can be found in the attached Word document "Sequence T Filename Key", copied from the Phase VI Test Report.1Licence not specifiedover 2 years ago
- **Overview** Sequences 8 and 9: Downwind Sonics (F,P) and Downwind Sonics Parked (P) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of 0° to 60° were achieved. The blade tip pitch was 3°. The rotor rotated at 72 RPM during Sequence 8, but it was parked during Sequence 9. Blade pressure measurements were collected. The five-hole probes were removed and the plugs were installed. Plastic tape 0.03-mm-thick was used to smooth the interface between the plugs and the blade. The teeter dampers were replaced with rigid links, and these two channels were flagged as not applicable by setting the measured values in the data file to –99999.99 Nm. The teeter link load cell was pre-tensioned to 40,000 N. During post-processing, the probe channels were set to read -99999.99. Sonic anemometers were mounted on a strut downwind of the turbine. The strut was mounted to the T-frame, which was rotated to align the anemometers aft of the 9% and 49% radius locations at hub height. Because of this configuration, the tunnel balance data are considered invalid. Sequence 9 was designed to compare the downwind sonic anemometer readings with the upwind sonic anemometers without interference from the turbine. The rotor was parked with the instrumented blade at 0° azimuth. All pressure measurements obtained in Sequence 9 are invalid because sufficient time for temperature stabilization did not occur, thus all associated data values were flagged as not applicable by setting the measured values in the data file to 0.0000 Pa. This test is further described in Appendix G. **Data Details** File naming information can be found in the attached Word document "Sequence 9 Filename Key", copied from the Phase VI Test Report.1Licence not specifiedover 2 years ago
- Data from high temperature dynamic sealing tests for various fracture widths, at various temperatures (degrees F), with 5 wt.% bentonite-based mud containing various material fiber contents, at 100 to 400 psi differential pressure. Data from pressure test and evaluation of the dynamic lost circulation materials (LCM) testing unit to reflect the condition of open and sealed fracture using fracture width of 1000 microns at 120 degrees F. Links to two papers based on the data - "Loss circulation prevention in geothermal drilling by shape memory polymer" which was published in Geothermics 89 (2021) 101943) as well as "Evaluating sealability of blended smart polymer and fiber additive for geothermal drilling with the effect of fracture opening size", published in the Journal of Petroleum Science and Engineering 206 (2021) 108998.1Licence not specifiedover 2 years ago
- The problem of loss circulation in geothermal wells is inherently challenging due to high temperatures, brittle rocks, and presence of abundant fractures. Because of the inherent challenges in geothermal environments, there are limitations in selecting proper lost circulation materials (LCMs). Traditional LCMs such as calcium carbonates that are commonly used in the oil and gas drilling may be softened and prone to failure during geothermal drilling. Moreover, evaluating the performance of different LCMs for geothermal drilling requires unique testing setups, which is expensive, and complicated to run due to harsh environmental conditions of geothermal systems. Herein, we present a numerical approach to simulate LCM transport and bridging through fractures in downhole conditions. By discrete element methods, each individual particle trajectory, and their interactions with the fluid and surrounding particles are incorporated into the analysis. To validate the model, we used experimental results acquired from a high-temperature flow loop system built specifically for this purpose. We took a further step in this work and considered LCM particles that are made from a shape memory polymer (SMP). These particles start expanding and adhering to each other in downhole conditions. The use of SMP is shown to be advantageous in sealing large fractures (3 mm aperture). We demonstrated how numerical modelling may supplement laboratory tests to show initiation of the bridging process, fracture plugging or even its failure. Using the proposed methodology may significantly reduce the number of experiments needed to find an effective LCM recipe, hence drillers can save time and costs by assessing different LCM systems numerically.1Licence not specifiedover 2 years ago
- Data sets from simulation runs include 144 wave cases that were run based on the WEC-Sim model (https://mhkdr.openei.org/submissions/483). The 144 wave cases represent waves with the following wave height and wave period ranges: - Significant Wave Height: 0.25 - 4.0m in 0.25m increments - Wave Period: 5 - 13 sec in 1 sec increments Each run was simulated using a Pierson-Moskowitz irregular wave spectrum with a 200 second ramp time and a total simulation time of 2,200 seconds. Summary data set includes a spreadsheet and image files with matrices that are associated with data from simulation runs. All matrices cover the same significant wave height and wave periods from the sim runs, in the same increments. The following matrices are included: - Mechanical Power Input: Absorbed power calculated using linear input velocity at PTO (power take-off) multiplied by winch tension. - Mechanical Power Output: The hydraulic power calculated at the pump output prior to the pressure relief valve dump. - Feed Pressure: Average pressure at RO (reverse osmosis) input prior to pre-filters - RO Power Input: The hydraulic power calculated at the RO system inlet, accounts for flow loss due to pressure relief valve - Water Production: Average clean water flow at RO output1Licence not specifiedover 2 years ago
- The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU) device. This submission includes the Advanced TidGen cost and cost of energy metrics after critical design review for BP1, and a complete LCOE content model and LCOE reporting according to DOE guidance for the baseline system and the system with advanced technology integrated. A revised LCOE content model is also included, with more relevant market array assumptions. Additionally, this submission includes a complete system overview and component overview content models. The LCOE Content Model provides data submitters with an easy and consistent means of uploading data that can be used to calculate the levelized cost of energy for MHK devices. Data represents the design completed for the Critical Design Review conducted at ORPC in December, 2017. All values are for a single device. Note that with substantial fixed costs, larger arrays will greatly reduce LCOE. For an array in Admiralty Inlet producing 136,000 MWh, 270 devices with an array CAPEX of $540,260,052 and an array OPEX of $39,959,207 would result in an LCOE of $722/MWh.1Licence not specifiedover 2 years ago
- Interferometric Synthetic Aperture Radar data from the TerraSAR-X and the TanDEM-X satellite missions operated by the German Space Agency (DLR). Interferometric pairs (interferograms) were created using generic mapping tool GMT-SAR processing software (see link in Resources). Data from January through November 2021.1Licence not specifiedover 2 years ago
- The TidGen Power System generates emission-free electricity from tidal currents and connects directly into existing grids using smart grid technology. The power system consists of three major subsystems: shore-side power electronics, mooring system, and turbine generator unit (TGU) device. This submission includes the preliminary Installation, Operation & Maintenance (IO&M) and testing plan. In 2012, the first TidGen device was installed in Cobscook Bay utilizing a piled foundation, which required extensive, costly geotechnical survey and on-water effort on the order of several weeks to install the system. The Advanced TidGen 2.0 Power System has adapted the Buoyant Tensioned Mooring System (BTMS) that reduces on-water deployment time to within a tidal cycle. The device has been designed to match the resources typically available in remote regions, such as Igiugig, Alaska, which are the immediate commercial market for ORPC's technology. The system has been designed to meet requirements throughout the entire lifecycle concept of operations.1Licence not specifiedover 2 years ago
- Interferometric Synthetic Aperture Radar data from the TerraSAR-X and the TanDEM-X satellite missions operated by the German Space Agency (DLR). Interferometric pairs (interferograms) were created using generic mapping tool GMT-SAR processing software (see link in Resources). Data from January through December 2020.1Licence not specifiedover 2 years ago
- Interferometric Synthetic Aperture Radar data from the TerraSAR-X and the TanDEM-X satellite missions operated by the German Space Agency (DLR). Interferometric pairs (interferograms) were created using generic mapping tool GMT-SAR processing software (see link in Resources). Data from January through June 2022.1Licence not specifiedover 2 years ago
- Data were collected to characterize whole-house mechanical ventilation (WHMV) and indoor air quality (IAQ) in 55 homes in the Marine climate of Oregon and Cold-Dry climate of Colorado in the U.S. Sixteen homes were monitored for two weeks, with and without WHMV operating. Ventilation airflows; airtightness; time-resolved CO2, PM2.5 and radon; and time-integrated NO2, NOX and formaldehyde were measured. Participants provided information about IAQ-impacting activities, perceptions and ventilation use. All homes had operational cooktop ventilation and bathroom exhaust. Thirty homes had equipment that could meet the ASHRAE 62.2-2010 standard with continuous or controlled runtime and 34 had some WHMV operating as found. Thirty-five of 46 participants with WHMV reported they did not know how to operate it, and only half of the systems were properly labeled. Two-week homes had lower formaldehyde, radon, CO2, and NO (NOX-NO2) when operated with WHMV; and also had faster PM2.5 decays following indoor emission events. Overall IAQ satisfaction was similar in Oregon and Colorado, but more Colorado participants (19 vs. 3%) felt their IAQ could be improved and more reported dryness as a problem (58 vs. 14%). The collected data indicate that there are benefits of operating WHMV, even when continuous use may not be needed because outdoor pollutant concentrations are low and indoor sources do not present substantial challenges.1Licence not specifiedover 2 years ago
- Test data from the 1/15th Wave Tank Tests of the Azura performed in 2017/2018 to validate the power performance and survivability of the Azura Design developed by Northwest Energy Innovations (NWEI) planned for deployment at the US Navy's Wave Energy Test Site. Raw and processed data included, along with test plan, test report, and summary data in the content model: "WEC Lab Testing content Model".1Licence not specifiedover 2 years ago
- Two broadband seismometers were installed on the 4100 level and recorded for the duration of EGS Collab Experiment #2. Inspired by published data from similar instruments installed in the Aspo Hard Rock Lab, these long-period instruments aimed to measure the tilting of the drift in response to the injection of fluid into the testbed. One instrument was installed underneath the wellheads in Site A (aka the "battery" alcove) and the other was installed along the east wall of the drift, south of Site B. Due to the feet of gravel (ballast) laid along the floor of the drift, we were unable to anchor the sensors directly to the rock. As a result, the coupling of the sensors to the experiment rock volume is likely poor. In addition, there are a number of noise sources that complicate the interpretation of the data. For example, sensor BBB is installed adjacent (within 3 ft) to the rail line that runs towards the Ross shaft. Trains (motors) run along this line almost daily and produce a large signal in these data. Careful extraction of periods of interest, as well as filtering for specific signals, is necessary. The sensors are Nanometrics Trillium Compact Posthole seismometers, sensitive down to 120 seconds period. They were installed as close to the drift wall and as deep as we could manually excavate (only about 1 ft or so). The holes were leveled with sand and the sensors were placed on a paver before backfilling with sand. The hole was then covered by a bucket filled with insulation to improve the sensor's isolation from daily temperature variations, which are minor but present due to drift ventilation from the surface. Data were recorded on Nanometrics Centaur digitizers at 100 Hz. The full response information is available in the StationXML file provided here, or by querying the sensors through the IRIS DMC (see links below). These instruments were provided free of charge through the IRIS PASSCAL instrument center. The network code is XP and the station codes are BBA and BBB. The waveform data can be queried through the IRIS FDSN server using any method the user likes. One convenient option is to use the Obspy python package: https://docs.obspy.org/packages/obspy.clients.fdsn.html1Licence not specifiedover 2 years ago
- Core-based in-situ stress estimation, Triaxial Ultrasonic Velocity (labTUV) data, and Deformation Rate Analysis (DRA) data for Utah FORGE well 16A(78)-32 using triaxial ultrasonic velocity and deformation rate analysis. Report documenting a multi-component approach to characterizing in-situ stress at the U.S. DOE FORGE EGS site: laboratory, modeling and field measurement. Core-based methods for in-situ stress estimation were applied using samples from 5 intervals within the Utah FORGE 16A(78)-32 well. At three of these locations, Triaxial Ultrasonic Velocity (labTUV) tests were performed, resulting in experimentally-determined relationships between wave velocities and stresses. Non-monotonic increase in the velocity-stress relationships are inferred provide evidence of stress history and are therefore used to estimate in-situ stress magnitudes. Additionally, Deformation Rate Analysis (DRA) tests were run on core plugs from various orientations at each of the 5 sampling locations. These, too, provide evidence of stress history based on stress-strain behavior. A novel Weight of Evidence (WoE) method was developed as a means of synthesizing in-situ stress evidence from these two types of tests. Results indicate the minimum horizontal stress gradient ranges from 0.58 psi/ft to 0.69 psi/ft, with 4 of the 5 values between 0.66 psi/ft and 0.69 psi/ft. The vertical stress gradient ranges from 1.05 psi/ft to 1.12 psi/ft, with 4 of the 5 zones given results between 1.09 psi/ft and 1.12 psi/ft. The maximum horizontal stress gradient ranges from 0.98 psi/ft to 1.34 psi/ft, with 4 of the 5 zones falling between 0.98 psi/ft and 1.24 psi/ft. The stress regime thus appears to be on the edge between normal faulting and strike-slip faulting, potentially flipping back and forth between the two regimes due to variability of rock properties, structures such as faults, and/or thermal anomalies.1Licence not specifiedover 2 years ago
- This submission contains an ESRI map package (.mpk) with an embedded geodatabase for GIS resources used or derived in the Nevada Machine Learning project, meant to accompany the final report. The package includes layer descriptions, layer grouping, and symbology. Layer groups include: new/revised datasets (paleo-geothermal features, geochemistry, geophysics, heat flow, slip and dilation, potential structures, geothermal power plants, positive and negative test sites), machine learning model input grids, machine learning models (Artificial Neural Network (ANN), Extreme Learning Machine (ELM), Bayesian Neural Network (BNN), Principal Component Analysis (PCA/PCAk), Non-negative Matrix Factorization (NMF/NMFk) - supervised and unsupervised), original NV Play Fairway data and models, and NV cultural/reference data. See layer descriptions for additional metadata. Smaller GIS resource packages (by category) can be found in the related datasets section of this submission. A submission linking the full codebase for generating machine learning output models is available through the "Related Datasets" link on this page, and contains results beyond the top picks present in this compilation.1Licence not specifiedover 2 years ago
- Berkeley Labs "Utility-Scale Solar", 2022 Edition presents analysis of empirical plant-level data from the U.S. fleet of ground-mounted photovoltaic (PV), PV+battery, and concentrating solar-thermal power (CSP) plants with capacities exceeding 5 MWAC. While focused on key developments in 2021, this report explores trends in deployment, technology, capital and operating costs, capacity factors, the levelized cost of solar energy (LCOE), power purchase agreement (PPA) prices, wholesale market value, and interconnection queue data.1Licence not specifiedover 2 years ago
- Data from two Tensor Optical Fiber Strainmeters that were operational during Stages 1, 2, and 3 of the April, 2022 stimulation of well 16A(78)-32. Each csv file contains data from each stimulation stage (stage1, stage2, stage3) for both Phase 1a strainmeter installations (FS01, formerly FS-C, and FS02, formerly FS1-2) in human-readable comma-separated value text files. There are two header lines in each file describing the data contained in that column along with their units, respectively. Data have been decimated from 2 to 1 Hz to match the Pason data found in the linked GDR dataset below (16A78-32 Stimulation Pason Data). These files contain the time series spanning the same time interval as the Pason data as well as ambient data for 5 hours before the stimulation and 5 hours following shut in. The station locations were chosen based on their proximity to the borehole seismometers owned and operated by the University of Utah. See README.txt for more information.1Licence not specifiedover 2 years ago
- This dataset includes modeled velocity and discharge at five communities in the middle Kuskokwim River region: Aniak, Chuathbaluk, Crooked Creek, Red Devil and Stony River. Modeled velocities and discharge represent daily averages calculated for the openwater season (OWS) from June 1 - October 18 over the 20 year period 2000-2019 using the raw data described below and included in this archive; full details of methodology are described in (Brown et al. submitted to Renewable Energy). Raw data inputs to inform the modeling process include in-situ measurements of 1) discharge with an acoustic Doppler current meter (ADCP, 600kHz Workhorse Rio Grande by Teledyne RD Instruments) and a global positioning receiver (GPS, Trimble 5700, 5800 and R8) utilizing Real Time Kinematic (RTK) GPS mode over 1-2 days at each site in 2009 or 2010 (Ravens 2014), and 2) river stage with a water level logger (HOBO U20-001-01 by Onset) over 2-9 weeks at each site (Ravens 2014), 3) in addition to a 20 year long-term discharge record collected at the USGS stream gage site in Crooked Creek (USGS 2016). Raw data (discharge and stage) are included in this archive for two additional communities: Lower Kalskag and Sleetmute, where modeled velocities were not calculated due to equipment failure or loss. The USGS stream gage data at Crooked Creek (USGS 2016) and stream gage methodology (Turnipseed and Sauer 2010) are publicly available online, so the data are not duplicated here.1Licence not specifiedover 2 years ago
- Time-coincident load, wind, and solar data including actual and probabilistic forecast datasets at 5-min resolution for ERCOT, MISO, NYISO, and SPP. Wind and solar profiles are supplied for existing sites as well as planned sites based on interconnection queue projects as of 2021. For ERCOT actuals are provided for 2017 and 2018 and forecasts for 2018, and for the remaining ISOs actuals are provided for 2018 and 2019 and forecasts for 2019. There datasets were produced by NREL as part of the ARPA-E PERFORM project, an ARPA-E funded program that aim to use time-coincident power and load seeks to develop innovative management systems that represent the relative delivery risk of each asset and balance the collective risk of all assets across the grid. For more information on the datasets and methods used to generate them see https://github.com/PERFORM-Forecasts/documentation.1Licence not specifiedover 2 years ago
- Final report for the DOE GTO funded research on geologic thermal energy storage (GeoTES), or commonly known as reservoir thermal energy storage (RTES). The results described in this report shed light on various aspects of RTES including project siting, operational performance, mitigation of both subsurface and surface infrastructure issues, and system longevity. Additionally, the reviews of international projects provide valuable lessons associated with exploration, initiation, operation, and sustainable maintenance of RTES. Overall site characterization, THM modeling, risk evaluation, and flexible operations are key aspects to a suitable RTES project. Geochemical modeling supported by laboratory experiments show that understanding the intricacies in brine chemistry and fluid evolution within changing thermal and pressure environments is important because resultant diagenetic reactions and subsequent scaling exist even in unexpected scenarios. Thermo-hydro-chemical (THC) and THM modeling with MOOSE and TOUGH also inform the potential for hydrogeological and geochemical changes within the reservoir and best operational parameters over the life of an RTES system. The results of this study help define future RTES research projects that will facilitate successful future deployment of such systems and make RTES a more viable option for energy storage in the U.S.1Licence not specifiedover 2 years ago
- Photos of core samples from Lanai Island. During the third phase of the Hawaii Play Fairway project, further exploration involved drilling a groundwater well in Lanai's Palawai Basin and performing more geophysical surveys. The project deepened an existing water well on Lanai. Drilling occurred 24/7 the entire month of June 2019 over which time Lanai Well 10 was deepened from 427 m to 1057 m, with continuous core collected. The roughly linear temperature gradient was an average of 42 degC/km, and a maximum bottom hole temperature, 66 degC. This gradient is more than twice the background for Hawaii and within a range of gradients measured in this depth range for some exploration wells within KERZ. The Hawaii Play Fairway project seeks to explore the geologic structures that exist in the caldera region of Hawaiian volcanoes; how those structures influence groundwater storage and flow; and how the magmatic heat from Hawaiian shield volcanoes cools over time. The Hawaii Groundwater and Geothermal Resources Center (Hawaii Institute of Geophysics and Planetology, University of Hawaii at Manoa) executed the Hawaii Play Fairway project. For more information, go to HGGRC's website that is linked in the resources.1Licence not specifiedover 2 years ago
- The University of Hawaii at Manoa conducted a Play Fairway Analysis of the state of geothermal potential for the islands. Phase I included the aggregation of all existing geologic, geophysical and geochemical data available. A probability model incorporating heat, fluid, and permeability was then created to assess the probability of viable geothermal development. Phase II is the focus of this paper, with new data collection as the goal for this funding period. The Play Fairway Project collected new geothermal groundwater data from 60 wells and 1 spring across the State of Hawaii. Geochemical geothermal indicators used previously in Hawaii, and around the world, were investigated for the newly acquired data in Phase II. These indicators include groundwater temperature, chloride:magnesium ratios, sulfate:chloride ratios, and silica concentrations. All chemical analyses were collected by ... the Play Fairway team and analyzed at various labs at the University of Hawaii at Manoa. Of the ten target areas identified for Phase II, two of the sites provide encouraging groundwater geochemical results for potential geothermal resources. These sites include the Southwest Rift Zone of Haleakala, Maui, and the Palawai Basin, Lanai. Multiple geothermal indicators have been observed in these areas and, therefore, provide encouragement to further explore for subsurface heat. Further investigation is recommended in these target areas through geological, geophysical, and geochemical exploration. The Hawaii Play Fairway project was funded by the U.S. Department of Energy Geothermal Technologies Office, and the Hawaii Groundwater and Geothermal Resources Center (Hawaii Institute of Geophysics and Planetology, University of Hawaii at Manoa) executed the project. For more information, go to HGGRC's website that is linked in the resources.1Licence not specifiedover 2 years ago
- These datasets are from tidal resource characterization measurements collected on the Terrasond High Energy Oceanographic Mooring (THEOM) from 1 July 2021 to 30 August 2021 (60 days) in Cook Inlet, Alaska. The lander was deployed at 60.7207031 N, 151.4294998 W in ~50 m of water. The dataset contains raw and processed data from the following two instruments: 1. A Nortek Signature 500 kHz acoustic Doppler current profiler (ADCP). Data were recorded in 4 Hz in the beam coordinate system from all 5 beams. Processed data has been averaged into 5 minutes bins and converted to the East-North-Up (ENU) coordinate system. 2. A Nortek Vector acoustic Doppler velocimeter (ADV). Data were recorded at 8 Hz in the beam coordinate system. Processed data has been averaged into 5 minutes bins and converted to the Streamwise - Cross-stream - Vertical (Principal) coordinate system. Turbulence statistics were calculated from 5-minute bins, with an FFT length equal to the bin length, and saved in the processed dataset. Data was read and analyzed using the DOLfYN (version 1.0.2) python package and saved in MATLAB (.mat) and netCDF (.nc) file formats. Files containing analyzed data (".b1") were standardized using the TSDAT (version 0.4.2) python package. NetCDF files can be opened using DOLfYN (e.g., `dat = dolfyn.load(''*.nc")`) or the xarray python package (e.g. `dat = xarray.open_dataset("*.nc"). All distances are in meters (e.g., depth, range, etc), and all velocities in m/s. See the DOLfYN documentation linked in the submission, and/or the Nortek documentation for additional details.1Licence not specifiedover 2 years ago
- The report included in this submission details the nontechnical barriers to entry for development of geothermal resources in the Salton Sea. The Salton Sea provides an economically viable opportunity for replacing the energy imported by California which makes up 25 percent of Californias total electricity supply. However, geothermal energy in the Salton Sea has been largely undeveloped since the 1980s. This report preforms a techno-economic analysis of Geothermal Energy in the Salton Sea and develops a model to quantify the nontechnical challenges and opportunities associated with new geothermal development in the Salton Sea. Geothermal energy offers an opportunity to generate baseload, renewable energy that can help support the transition to an energy economy with reduced impacts on climate change and replace older, more expensive, nonrenewable, and more resource-impacting energy-generation facilities. The United States has the largest known geothermal resource in the world, with over 31 GW of conventional geothermal potential. However, due to market conditions, an inability to properly quantify both electrical grid benefits and resource stability, and the difficulty of exploring and developing the geothermal resource, few new geothermal projects have come online over the past three decades. The Salton Sea, in Imperial County, California, provides a prime location and opportunity to develop new geothermal resources. The Salton Sea contains a robust, well-mapped, geothermal resource, with opportunities for concurrent development of lithium and other mineral resources. This report describes the history of geothermal development at the Salton Sea and compares geothermal to other renewable energy sources in the area. The report then uses a techno-economic analysis (TEA) model to analyze the relative benefits and costs of various challenges and opportunities and provides recommendations for streamlining geothermal development at the Salton Sea and elsewhere. The challenges and opportunities analyzed in the TEA model were informed by stakeholder interviews and literature reviews. Based upon the identified challenges and opportunities and the results of the TEA model, primary findings are that certain nontechnical barriers such as permitting costs play only a minor role in determining the viability of development of the geothermal resource at the Salton Sea. Other barriers such as permitting timelines, government/agency coordination, and the potential co-location of lithium extraction with a geothermal plant may result in much larger impacts on project viability.1Licence not specifiedover 2 years ago
- The CFD (computational fluid dynamics) results for the Mass of Water Turbine (MOWT) current energy converter from MWNW Consulting (formerly Ecosse IP). Each case is self-contained in its own tar.gz archive file. The archive contains the scripts required to perform a full simulation using OpenFOAM v1906. The scripts to process the output and plot forces are included in "Plotting Scripts", and all computational meshes generated are included in "Computational Grids".1Licence not specifiedover 2 years ago
- Thermal conductivity (TC) data taken for different wells at a specified drill depth. This is an abridged version of the complete SMU heat flow database, downloaded from the SMU node of the NGDS at the beginning of INGENIOUS (approximately April 2021), and filtered to the INGENIOUS study area. This National Geothermal Data System (NGDS) project aggregates geothermal data collected and curated by the SMU Geothermal Laboratory and its partner organizations. All columns in this database are the same as the SMU database, except for 2 additions associated with this project. Repeated columns are for data correlation purposes. Column descriptions and data types are the same as previous iterations of the SMU database. The new values that are the addition are two new columns developed as part of the INGENIOUS project: INGENIOUS TC Value | INGENIOUS notes INGENIOUS notes are individual notes that were written for specific data points during the analysis process. There are not always notes associated with each input value. INGENIOUS TC Value includes 4 values: 1. Assumed Measured These are values that are assumed to be measured thermal conductivity values, either within a specific well or within the same study region. Many of these have either a published reference, a reported standard deviation, or a unique thermal conductivity value. 2. Data release - assumed measured These are values in the SMU database that are from proprietary data that were added to the SMU database and are labeled as data release for their reference. These values were searched for in person at the SMU Geothermal Laboratory as well as virtual examination of data available on the NGDS. For many of these, there are reported thermal conductivity values associated with the heat flow data in the database, but no specific table or reference to measurements in the original data release files. 3. Known measured These are values that have a reported measurement, either as an original file in the SMU data files on the NGDS or a reported table in a publication. In the rare circumstances, Maria Richards or David Blackwell confirmed measurement. Confirmation of measurement would be written in the INGENIOUS notes column. 4. Unmeasured Unmeasured values are those that are known to be unmeasured, either estimated from another report or no information given. In the SMU database, there are wells that have a heat flow but no thermal conductivity. These are categorized as unmeasured. There are also heat flow values that are stated to have estimated or generalized average thermal conductivity values for the region and rock type. Because these are known to be unmeasured, they are categorized as such. 5. Blank Blank values are either A quality or X quality. These quality values are stated in the INGENIOUS notes. These values were not going to change associated with the heat flow analysis, so these were not examined.1Licence not specifiedover 2 years ago
- This dataset contains the underwater 360-degree video files recorded with a Boxfish 360 camera in La Jolla, CA, near a gravity base anchor of the CalWave xWave wave energy converter in December 2021 over three days, at dawn, noon, and dusk. It was generated to test the ability of using this type of camera mounted on an aluminum frame as a video lander to monitor the artificial reef effect of marine energy devices and associated seafloor structures. The Boxfish 360 is made of 3 cameras each recording its own set of videos. The videos are MOV files that can be viewed individually with any video reader but need to be stitched together to create the 360-degree footage. This dataset contains all the raw video files collected at dawn, noon and dusk on 11/30/2021, 12/01/2021 and 12/02/2021, for about 1h each time. This dataset is associated with the journal manuscript below (linked in resources): Hemery, L.G.; Mackereth, K.F.; Gunn, C.M.; Pablo, E.B. Use of a 360-Degree Underwater Camera to Characterize Artificial Reef and Fish Aggregating Effects around Marine Energy Devices. J. Mar. Sci. Eng. 2022, 10, 555. https://doi.org/10.3390/jmse100505551Licence not specifiedover 2 years ago
- The experimental data obtained in this project is the thermal stability data of various foams measured using the setup established at Temple University during this study. The setup is installed with a portable digital camera which can take images and videos of foam evolution at a given pressure and temperature condition. Consequently, the half-life data was recorded from the images/videos, which are used as a measure of the thermal stability for foams. Over the 3 years of this project, four different surfactants and five different stabilizing agents were studied. The surfactants are, Alfa Olefin Sulfonate (AOS), Sodium Dodecyl Sulphate (SDS), Tergitol (NP-40), and Cetyltrimethylammonium chloride (CTAC). The stabilizing agents are, guar gum, bentonite clay, crosslinking agents, silicon dioxide nanoparticles (60 to 70nm), and graphene oxide dispersions. Foam stability was evaluated at different temperatures between 100C and 200cC, while the foam generation pressure varied between atmospheric pressure (14.7 psi) and 1000 psi. The images are saved as .jpg file and videos are saved as .avi files.1Licence not specifiedover 2 years ago
- At the beginning of this project, the Temple team spent significant effort to collect data relevant to foam fracturing. More than 40 articles/reports were found in the open literature that reported the properties of aqueous foams under various testing conditions. The foam properties included viscosity and stability in terms of half-life, while were influenced by the foam quality, shear rate, temperature, pressure, as well as surfactants and additives used in making the foam base solutions. As a result, more than 1100 data points were collected, which are included in a master worksheet named "Literature data on Foam Fracturing Fluid". These data points are organized based on following parameters: 1. Literature source, including authors and publication year 2. Gaseous phase (e.g. CO2, N2) 3. Liquid phase (e.g. tap water, DI water, salt water) 4. Surfactants and their concentrations 6. Additives 7. Foam quality 8. Pressure 9. Temperature 10. Viscosity 11. Foam stability, which was characterized by its half-life: Half-life Foam study data base with data analysis was completed and a webpage is designed hosted on public server at https://surfactant-dashboard.herokuapp.com1Licence not specifiedover 2 years ago
- This submission contains the presentation slides and recordings from EGS Collab Modeling and Simulation Working Group (MSWG) teleconferences number 99 through 128. These teleconferences served three objectives for the project: 1) share simulation results, 2) communicate field activities and results to the simulation teams, and 3) hold open scientific discussions on EGS topics.1Licence not specifiedover 2 years ago
- This is a set of data related to the stimulation program at Utah FORGE well 16A(78)-32 during April, 2022. This includes daily reports, 1 second Pason data, tracer data, and shear stimulation data and information including a report of an evolving prognosis for the stimulation operations.1Licence not specifiedover 2 years ago
- The data includes a geospatial and spreadsheet representation of a resource analysis for closed loop pumped storage systems across the Continental United States, Alaska, Hawaii, and Puerto Rico. The data includes energy storage potential, water volume, distance from source to storage, hydraulic head, dollars per kilowatt of storage, and transmission spurline cost for each pumped storage hydropower (PHS) reservoir. Each reservoir represented in this dataset is represented on potential 10 hour storage duration PSH system comprised of two reservoirs. Units of measure are laid out in the dataset. Pumped storage hydropower (PSH) represents the bulk of the United States' current energy storage capacity: 23 gigawatts (GW) of the 24 GW national total (Denholm et al. 2021). This capacity was largely built between 1960 and 1990. PSH is a mature and proven method of energy storage with competitive round-trip efficiency and long life spans. These qualities make PSH a very attractive potential solution to energy storage needs, particularly for longer-duration storage (8 hours or more); such storage will be crucial to bridge gaps in electricity production as variable wind and solar production continue to comprise an ever-larger portion of the United States' energy portfolio. This study seeks to better understand the technical potential for PSH development in the United States by developing a national-scale resource assessment for closed-loop PSH. For more information, please refer to the Closed Loop Pumped Storage Hydropower Resource Assessment for the United States linked in the resources.1Licence not specifiedover 2 years ago
- This is a final technical report for the project: Foam Fracturing Study for Stimulation Development of Enhanced Geothermal Systems (EGS). The goal is to demonstrate the feasibility of foam fracturing in EGS applications. The project, led by Oak Ridge National Laboratory (ORNL), was conducted in collaboration with Temple University. The report describes the research activities with Task 1 at ORNL: foam fracturing testing system development and experimental study on foam fracturing, and Task 2 at Temple University: foam testing and foam characterization. Main findings are: 1. A foam fracturing test system has been developed at ORNL, which can be used to perform foam fracturing under pressure up to 6,000 psi. The system monitors foam density during fracturing online and is capable of testing materials in both monotonic and cyclic (up to 50 Hz) injections. 2. Foam fracturing tests were carried out on Charcoal black granite specimens with a blind borehole to the middle length. Two diameters of blind borehole were tested; G2 series: 9.53 mm and G3 series: 4.76 mm. N2-in-water foam was used with AOS as a surfactant. 3. There was a hole-size effect on fracture initiation pressure. The effect is smaller in the case of foam, which was influenced by the high penetrability of gas in foam. Breakdown pressure showed a behavior just as that of fracture pressure; namely an increased value for small hole samples, while the effect in water fracture was more impressive than in foam fracture. 4. Water mass was reduced in foam fracturing within similar range of breakdown pressures. In G2 series, it was decreased from 10.44 g for water fracturing to 5.17 g, representing more than 50% water reduction. Therefore, there is the potential to reduce water use in EGS stimulation through foam fracturing. 5. Use of cyclic injection has the potential to reduce the breakdown pressure and seismicity in EGS application. Experiments using 4-s cycle period found that specimens can be fractured with a low number of cycles. The fatigue pressure was approximately 64 - 77% of monotonic breakdown pressure for water fracturing and 58 - 94% of the breakdown pressure for foam fracturing. 6. A foam stability testing system has been developed that can test foam at 220 Deg C to 2,000 psi. Tested components of candidate foams included two gases: N2 and CO2; 4 surfactants: AOS, SDS, NP-40 and CTAC; 5 stabilizing agents: guar, bentonite clay, borate salt, silica NPs, and GO. 7. N2 and AOS provided the most stable performance over the tested ranges. Furthermore, the AOS foam with stabilizing agents of guar and borate salt (crosslinker) offered the highest half-life of 20 minutes at 200 Deg C and 1,000 psi. 8. Arrhenius equation and modified power law have been demonstrated to fit well the half-time vs. temperature and pressure data, respectively. These relations can be useful to provide the suggestion for future foam stability study. This submission contains the supporting data developed during the project: 1) A final technical report 2) Granite fracturing data in monotonic and cyclic injections with water and N2 foam Foam performance data in various temperatures and pressures, including half-time, is submitted separately.1Licence not specifiedover 2 years ago
- The INTEGRATE (Inverse Network Transformations for Efficient Generation of Robust Airfoil and Turbine Enhancements) project is developing a new inverse-design capability for the aerodynamic design of wind turbine rotors using invertible neural networks. This AI-based design technology can capture complex non-linear aerodynamic effects while being 100 times faster than design approaches based on computational fluid dynamics. This project enables innovation in wind turbine design by accelerating time to market through higher-accuracy early design iterations to reduce the levelized cost of energy. INVERTIBLE NEURAL NETWORKS Researchers are leveraging a specialized invertible neural network (INN) architecture along with the novel dimension-reduction methods and airfoil/blade shape representations developed by collaborators at the National Institute of Standards and Technology (NIST) learns complex relationships between airfoil or blade shapes and their associated aerodynamic and structural properties. This INN architecture will accelerate designs by providing a cost-effective alternative to current industrial aerodynamic design processes, including: - Blade element momentum (BEM) theory models: limited effectiveness for design of offshore rotors with large, flexible blades where nonlinear aerodynamic effects dominate - Direct design using computational fluid dynamics (CFD): cost-prohibitive - Inverse-design models based on deep neural networks (DNNs): attractive alternative to CFD for 2D design problems, but quickly overwhelmed by the increased number of design variables in 3D problems AUTOMATED COMPUTATIONAL FLUID DYNAMICS FOR TRAINING DATA GENERATION - MERCURY FRAMEWORK The INN is trained on data obtained using the University of Marylands (UMD) Mercury Framework, which has with robust automated mesh generation capabilities and advanced turbulence and transition models validated for wind energy applications. Mercury is a multi-mesh paradigm, heterogeneous CPU-GPU framework. The framework incorporates three flow solvers at UMD, 1) OverTURNS, a structured solver on CPUs, 2) HAMSTR, a line based unstructured solver on CPUs, and 3) GARFIELD, a structured solver on GPUs. The framework is based on Python, that is often used to wrap C or Fortran codes for interoperability with other solvers. Communication between multiple solvers is accomplished with a Topology Independent Overset Grid Assembler (TIOGA). NOVEL AIRFOIL SHAPE REPRESENTATIONS USING GRASSMAN SPACES We developed a novel representation of shapes which decouples affine-style deformations from a rich set of data-driven deformations over a submanifold of the Grassmannian. The Grassmannian representation as an analytic generative model, informed by a database of physically relevant airfoils, offers (i) a rich set of novel 2D airfoil deformations not previously captured in the data , (ii) improved low-dimensional parameter domain for inferential statistics informing design/manufacturing, and (iii) consistent 3D blade representation and perturbation over a sequence of nominal shapes. TECHNOLOGY TRANSFER DEMONSTRATION - COUPLING WITH NREL WISDEM Researchers have integrated the inverse-design tool for 2D airfoils (INN-Airfoil) into WISDEM (Wind Plant Integrated Systems Design and Engineering Model), a multidisciplinary design and optimization framework for assessing the cost of energy, as part of tech-transfer demonstration. The integration of INN-Airfoil into WISDEM allows for the design of airfoils along with the blades that meet the dynamic design constraints on cost of energy, annual energy production, and the capital costs. Through preliminary studies, researchers have shown that the coupled INN-Airfoil + WISDEM approach reduces the cost of energy by around 1% compared to the conventional design approach. This page will serve as a place to easily access all the publications from this work and the repositories for the software developed and released through this project.1Licence not specifiedover 2 years ago
- The objective of the DISCOVR consortia is to develop an integrated algae strain screening platform for the discovery of high-productivity and resilient strains of algae that can be cultivated outdoors year-round via crop rotation. The data includes annual weather data, algae cultivation composition data, and pond water chemistry data between 2018 and 2021. This year-over-year cultivation data provides the underlying data in direct support of the annual State of Technology (SOT) analysis effort. These field experimental data and SOT reports are of interest to the U.S. Department of Energys (DOE) Energy Efficiency and Renewable Energys (EERE) Bioenergy Technologies office (BETO) in understanding current best algae agronomic practices in demonstrating progress towards future algae biomass productivity goals as outlined in the BETO Multi-Year Program Plan.1Licence not specifiedover 2 years ago
- Despite having a large geothermal power potential in the United States, only a small fraction has been developed for power generation. Various barriers, including technical, financial, and regulatory permit delays, are attributed to lower contribution of geothermal energy in the national grid. Unpredictable environmental reviews and permitting timelines are some of the non-technical barriers that can cause delays in geothermal exploration and utilization plans. This study shows that the geothermal permitting timelines can vary from six months to several years, depending on the presence or absence of biological resources, cultural resources, and sensitive environmental issues at the project site. The potential impacts of these permit barriers can range from investors abandoning geothermal development to making the product (i.e., electricity) more expensive and uncompetitive.1Licence not specifiedover 2 years ago
- This dataset, compiled by NREL using data from [ABB, the Velocity Suite](http://energymarketintel.com/) and the [U.S. Energy Information Administration dataset 861](http://www.eia.gov/electricity/data/eia861/), provides average residential, commercial and industrial electricity rates with likely zip codes for both investor owned utilities (IOU) and non-investor owned utilities. Note: the files include average rates for each utility (not average rates per zip code), but not the detailed rate structure data found in the [OpenEI U.S. Utility Rate Database](https://openei.org/apps/USURDB/).1Licence not specifiedover 2 years ago
- Mesh, properties, initial conditions, injection/withdrawal rates for modeling thermal, hydrological, and mechanical effects of fluid injection to and withdrawal from ground for Stockton University reservoir cooling system (aquifer storage cooling system), Galloway, New Jersey, on large scale grid, with some results. First simulation of J.T. Smith, E. Sonnenthal, P. Dobson, P. Nico, and M. Worthington, 2021. Thermal-hydrological-mechanical modeling of Stockton University reservoir cooling system, Proceedings of the 46th Workshop on Geothermal Reservoir Engineering, Stanford University, SGP-TR-218, from which Figures 1-5 pertain.1Licence not specifiedover 2 years ago
- This folder contains the input data for the WaterTAP3 model that was used for the eight NAWI (National Alliance for Water Innovation) source water baselines studies published in the Environmental Science and Technology special issue: Technology Baselines and Innovation Priorities for Water Treatment and Supply. There are also eight other separate DAMS submissions, one per source water, that include the model results for the published studies. In this data submission, all model inputs across the eight baselines are included. The data structure and content are described in a README.txt file. For more details on how to use the data in WaterTAP3 please refer to the model documentation and GitHub site found at "WaterTAP3 Github" linked in the submission resources.1Licence not specifiedover 2 years ago
- Results of the analysis of HyMap's spectra against know hydrothermally altered minerals in the Brady-Desert Peak Geothermal Areas. The analysis was performed using ENVI's Target Detection process against USGS library spectra for Chalcedony, Kaolinite, Gypsum, Hematite and Epsomite. Each compressed file includes three raster images created after fusing the target detection results for all minerals: _fusion_all - Contains the 8 layers resulting from target detection and fusion of the 5 minerals _fusion_all_normal - Contains each layer as above, after Winsorization (99% percentile on the positive side only due to skewness of results), and normalization of each layer to achieve a range between [0-1] _fusion_final - Contains a fused raster by sub-setting the normalized layers, with the results of MTMF, MTTCIMF, OSP and SAM. Both CEM and MF were discarded as being less accurate than MTMF, and TCIMF is less accurate than MTTCIMF, ACE results were discarded because they were notably different from the rest of the analyses. The base_names are: brady - Brady geothermal area only desert - Desert Peak geothermal area only hymap - Full image analysis comprising both the Brady and Desert Peak geothermal areas1Licence not specifiedover 2 years ago
- NREL Modular Ocean Instrumentation System (MOIS) data files for the Azura grid-connected deployment at the 30-meter berth of the US Navys Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).1Licence not specifiedover 2 years ago
- Geothermal power plants typically show decreasing heat and power production rates over time. Mitigation strategies include optimizing the management of existing wells - increasing or decreasing the fluid flow rates across the wells - and drilling new wells at appropriate locations. The latter is expensive, time-consuming, and subject to many engineering constraints, but the former is a viable mechanism for periodic adjustment of the available fluid allocations. Data and supporting literature from a study describing a new approach combining reservoir modeling and machine learning to produce models that enable strategies for the mitigation of decreased heat and power production rates over time for geothermal power plants. The computational approach used enables translation of sets of potential flow rates for the active wells into reservoir-wide estimates of produced energy and discovery of optimal flow allocations among the studied sets. In our computational experiments, we utilize collections of simulations for a specific reservoir (which capture subsurface characterization and realize history matching) along with machine learning models that predict temperature and pressure timeseries for production wells. We evaluate this approach using an "open-source" reservoir we have constructed that captures many of the characteristics of Brady Hot Springs, a commercially operational geothermal field in Nevada, USA. Selected results from a reservoir model of Brady Hot Springs itself are presented to show successful application to an existing system. In both cases, energy predictions prove to be highly accurate: all observed prediction errors do not exceed 3.68% for temperatures and 4.75% for pressures. In a cumulative energy estimation, we observe prediction errors that are less than 4.04%. A typical reservoir simulation for Brady Hot Springs completes in approximately 4 hours, whereas our machine learning models yield accurate 20-year predictions for temperatures, pressures, and produced energy in 0.9 seconds. This paper aims to demonstrate how the models and techniques from our study can be applied to achieve rapid exploration of controlled parameters and optimization of other geothermal reservoirs. Includes a synthetic, yet realistic, model of a geothermal reservoir, referred to as open-source reservoir (OSR). OSR is a 10-well (4 injection wells and 6 production wells) system that resembles Brady Hot Springs (a commercially operational geothermal field in Nevada, USA) at a high level but has a number of sufficiently modified characteristics (which renders any possible similarity between specific characteristics like temperatures and pressures as purely random). We study OSR through CMG simulations with a wide range of flow allocation scenarios. Includes a dataset with 101 simulated scenarios that cover the period of time between 2020 and 2040 and a link to the published paper about this project, where we focus on the Machine Learning work for predicting OSR's energy production based on the simulation data, as well as a link to the GitHub repository where we have published the code we have developed (please refer to the repository's readme file to see instructions on how to run the code). Additional links are included to associated work led by the USGS to identify geologic factors associated with well productivity in geothermal fields. Below are the high-level steps for applying the same modeling + ML process to other geothermal reservoirs: 1. Develop a geologic model of the geothermal field. The location of faults, upflow zones, aquifers, etc. need to be accounted for as accurately as possible 2. The geologic model needs to be converted to a reservoir model that can be used in a reservoir simulator, such as, for instance, CMG STARS, TETRAD, or FALCON 3. Using native state modeling, the initial temperature and pressure distributions are evaluated, and they become the initial conditions for dynamic reservoir simulations 4. Using history matching with tracers and available production data, the model should be tuned to represent the subsurface reservoir as accurately as possible 5. A large number of simulations is run using the history-matched reservoir model. Each simulation assumes a different wellbore flow rate allocation across the injection and production wells, where the individual selected flow rates do not violate the practical constraints for the corresponding wells. 6. ML models are trained using the simulation data. The code in our GitHub repository demonstrates how these models can be trained and evaluated. 7. The trained ML models can be used to evaluate a large set of candidate flow allocations with the goal of selecting the most optimal allocations, i.e., producing the largest amounts of thermal energy over the modeled period of time. The referenced paper provides more details about this optimization process1Licence not specifiedover 2 years ago
- Contains the Reference Model 3 (RM3) spreadsheets with the cost breakdown structure (CBS) for the levelized cost of energy (LCOE) calculations for a single RM3 device and multiple unit arrays. These spreadsheets are contained within an XLSX file and a spreadsheet editor such as Microsoft Excel is needed to open the file. This data was generated upon completion of the project on September 30, 2014. The Reference Model Project (RMP), sponsored by the U.S. Department of Energy (DOE), was a partnered effort to develop open-source MHK point designs as reference models (RMs) to benchmark MHK technology performance and costs, and an open-source methodology for design and analysis of MHK technologies, including models for estimating their capital costs, operational costs, and levelized costs of energy. The point designs also served as open-source test articles for university researchers and commercial technology developers. The RMP project team, led by Sandia National Laboratories (SNL), included a partnership between DOE, three national laboratories, including the National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL), and Oak Ridge National Laboratory (ORNL), the Applied Research Laboratory of Penn State University, and Re Vision Consulting. Reference Model 3 (RM3) is a wave point absorber, also referred to as a wave power buoy, that was designed for a reference site located off the shore of Eureka in Humboldt County, California. The design of the device consists of a surface float that translates (oscillates) with wave motion relative to a vertical column spar buoy, which connects to a subsurface reaction plate. This two-body point absorber converts wave energy into electrical power predominately from the devices heave oscillation induced by incident waves; the float is designed to oscillate up and down the vertical shaft up to 4 m. The bottom of the reaction plate is about 35 m below the water surface. The device is targeted for deployment in water depths of 40 m to 100 m. The point absorber is also connected to a mooring system to keep the floating device in position.1Licence not specifiedover 2 years ago
- Contains the Reference Model 1 (RM1) spreadsheets with the cost breakdown structure (CBS) for the levelized cost of energy (LCOE) calculations for a single RM1 device and multiple unit arrays. These spreadsheets are contained within an XLSX file and a spreadsheet editor such as Microsoft Excel is needed to open the file. This data was generated upon completion of the project on September 30, 2014. The Reference Model Project (RMP), sponsored by the U.S. Department of Energy (DOE), was a partnered effort to develop open-source MHK point designs as reference models (RMs) to benchmark MHK technology performance and costs, and an open-source methodology for design and analysis of MHK technologies, including models for estimating their capital costs, operational costs, and levelized costs of energy. The point designs also served as open-source test articles for university researchers and commercial technology developers. The RMP project team, led by Sandia National Laboratories (SNL), included a partnership between DOE, three national laboratories, including the National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL), and Oak Ridge National Laboratory (ORNL), the Applied Research Laboratory of Penn State University, and Re Vision Consulting. Reference Model 1 (RM1) is a dual variable-speed variable-pitch (VSVP) axial-flow tidal turbine device, designed for the Tacoma Narrows tidal current energy resource site in Puget Sound, Washington. RM1 comprises a monopile foundation and a crossarm assembly to mount the two rotors. The cross-arm assembly is nearly neutrally buoyant so the attached rotors can be recovered and redeployed with a minimal amount of lifting crane capacity; therefore, the design minimizes the handling requirements during deployment and recovery, which reduces overall cost in all O&M activities including access to the power conversion chain (PCC).1Licence not specifiedover 2 years ago
- Contains the Reference Model 2 (RM2) full scale geometry files of the River Current Turbine, developed by the Reference Model Project (RMP). These full scale geometry files are saved as SolidWorks assembly, IGS, X_T, and STEP files, and require a CAD program to view. This data was generated upon completion of the project on September 30, 2014. The Reference Model Project (RMP), sponsored by the U.S. Department of Energy (DOE), was a partnered effort to develop open-source MHK point designs as reference models (RMs) to benchmark MHK technology performance and costs, and an open-source methodology for design and analysis of MHK technologies, including models for estimating their capital costs, operational costs, and levelized costs of energy. The point designs also served as open-source test articles for university researchers and commercial technology developers. The RMP project team, led by Sandia National Laboratories (SNL), included a partnership between DOE, three national laboratories, including the National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL), and Oak Ridge National Laboratory (ORNL), the Applied Research Laboratory of Penn State University, and Re Vision Consulting. Reference Model 2 (RM2) is a variable speed dual-rotor cross-flow river turbine that is deployed at the waters surface. It was designed for deployment at a reference site modeled after a reach in the Mississippi River near Baton Rouge, Louisiana. The rotors are anchored to a two-pontoon vessel platform. Surface deployment of the turbine minimizes the handling requirements during deployment and recovery and reduces overall costs for all O&M activities, including allowing for easy access to the power conversion chain (PCC). The design (two rotors per platform) also reduces the environmental footprint and associated environmental compliance costs.1Licence not specifiedover 2 years ago
- Contains the Reference Model 3 (RM3) scaled scale geometry files of the Wave Point Absorber, developed by the Reference Model Project (RMP). These scaled geometry files are saved as SolidWorks assembly, IGS, and STEP files, and require a CAD program to view. The scaled RM3 device was tested at the Scripps Institution of Oceanography at the University of California at San Diego wave tank, details of which are described in the included test report. The scale of the geometries included in this submission are at a 1:33 scale compared to the full scale geometry. This data was generated upon completion of the project on September 30, 2014. The Reference Model Project (RMP), sponsored by the U.S. Department of Energy (DOE), was a partnered effort to develop open-source MHK point designs as reference models (RMs) to benchmark MHK technology performance and costs, and an open-source methodology for design and analysis of MHK technologies, including models for estimating their capital costs, operational costs, and levelized costs of energy. The point designs also served as open-source test articles for university researchers and commercial technology developers. The RMP project team, led by Sandia National Laboratories (SNL), included a partnership between DOE, three national laboratories, including the National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL), and Oak Ridge National Laboratory (ORNL), the Applied Research Laboratory of Penn State University, and Re Vision Consulting. Reference Model 3 (RM3) is a wave point absorber, also referred to as a wave power buoy, that was designed for a reference site located off the shore of Eureka in Humboldt County, California. The design of the device consists of a surface float that translates (oscillates) with wave motion relative to a vertical column spar buoy, which connects to a subsurface reaction plate. This two-body point absorber converts wave energy into electrical power predominately from the device?s heave oscillation induced by incident waves; the float is designed to oscillate up and down the vertical shaft up to 4 m. The bottom of the reaction plate is about 35 m below the water surface. The device is targeted for deployment in water depths of 40 m to 100 m. The point absorber is also connected to a mooring system to keep the floating device in position.1Licence not specifiedover 2 years ago
- Contains the Reference Model 1 (RM1) scaled scale geometry files of the Tidal Current Turbine, developed by the Reference Model Project (RMP). These scaled geometry files are saved as SolidWorks assembly, IGS, and STEP files, and require a CAD program to view. The scaled RM1 device was tested at the Saint Anthony Falls Laboratory (SAFL) at the University of Minnesota flume, details of which are described in the included journal article. The scale of the geometries included in this submission are at a 1:40 scale compared to the full scale geometry. This data was generated upon completion of the project on September 30, 2014. The Reference Model Project (RMP), sponsored by the U.S. Department of Energy (DOE), was a partnered effort to develop open-source MHK point designs as reference models (RMs) to benchmark MHK technology performance and costs, and an open-source methodology for design and analysis of MHK technologies, including models for estimating their capital costs, operational costs, and levelized costs of energy. The point designs also served as open-source test articles for university researchers and commercial technology developers. The RMP project team, led by Sandia National Laboratories (SNL), included a partnership between DOE, three national laboratories, including the National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL), and Oak Ridge National Laboratory (ORNL), the Applied Research Laboratory of Penn State University, and Re Vision Consulting. Reference Model 1 (RM1) is a dual variable-speed variable-pitch (VSVP) axial-flow tidal turbine device, designed for the Tacoma Narrows tidal current energy resource site in Puget Sound, Washington. RM1 comprises a monopile foundation and a crossarm assembly to mount the two rotors. The cross-arm assembly is nearly neutrally buoyant so the attached rotors can be recovered and redeployed with a minimal amount of lifting crane capacity; therefore, the design minimizes the handling requirements during deployment and recovery, which reduces overall cost in all O&M activities including access to the power conversion chain (PCC).1Licence not specifiedover 2 years ago
- Contains the Reference Model 6 (RM6) full scale geometry files of the Oscillating Water Column, developed by the Reference Model Project (RMP). These full scale geometry files are saved as SolidWorks assembly, IGS, and STEP files, and require a CAD program to view. This data was generated upon completion of the project on September 30, 2014. The Reference Model Project (RMP), sponsored by the U.S. Department of Energy (DOE), was a partnered effort to develop open-source MHK point designs as reference models (RMs) to benchmark MHK technology performance and costs, and an open-source methodology for design and analysis of MHK technologies, including models for estimating their capital costs, operational costs, and levelized costs of energy. The point designs also served as open-source test articles for university researchers and commercial technology developers. The RMP project team, led by Sandia National Laboratories (SNL), included a partnership between DOE, three national laboratories, including the National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL), and Oak Ridge National Laboratory (ORNL), the Applied Research Laboratory of Penn State University, and Re Vision Consulting. Reference Model 6 (RM6) is a Backward Bent Duct Buoy (BBDB), which is a type of oscillating water column wave energy converter. First proposed by Masuda, the BBDB design is a floating Oscillating Water Column (OWC) device that consists of an air chamber, an L-shaped duct, bow and stern buoyancy modules, and a power take-off (PTO) composed of a Wells air turbine and a generator. This L- shaped device opens to the ocean downstream from the wave propagation direction. Power is produced by the motion of the wave, which causes the ambient pressure in the air chamber to vary thereby forcing air to flow through the Wells turbine. The reference wave energy resource for RM6 was developed from site information collected near Eureka, in Humboldt County, California.1Licence not specifiedover 2 years ago
- Contains the Reference Model 3 (RM3) full scale geometry files of the Wave Point Absorber, developed by the Reference Model Project (RMP). These full scale geometry files are saved as SolidWorks assembly, IGS, and STEP files, and require a CAD program to view. This data was generated upon completion of the project on September 30, 2014. The Reference Model Project (RMP), sponsored by the U.S. Department of Energy (DOE), was a partnered effort to develop open-source MHK point designs as reference models (RMs) to benchmark MHK technology performance and costs, and an open-source methodology for design and analysis of MHK technologies, including models for estimating their capital costs, operational costs, and levelized costs of energy. The point designs also served as open-source test articles for university researchers and commercial technology developers. The RMP project team, led by Sandia National Laboratories (SNL), included a partnership between DOE, three national laboratories, including the National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL), and Oak Ridge National Laboratory (ORNL), the Applied Research Laboratory of Penn State University, and Re Vision Consulting. Reference Model 3 (RM3) is a wave point absorber, also referred to as a wave power buoy, that was designed for a reference site located off the shore of Eureka in Humboldt County, California. The design of the device consists of a surface float that translates (oscillates) with wave motion relative to a vertical column spar buoy, which connects to a subsurface reaction plate. This two-body point absorber converts wave energy into electrical power predominately from the device's heave oscillation induced by incident waves; the float is designed to oscillate up and down the vertical shaft up to 4 m. The bottom of the reaction plate is about 35 m below the water surface. The device is targeted for deployment in water depths of 40 m to 100 m. The point absorber is also connected to a mooring system to keep the floating device in position.1Licence not specifiedover 2 years ago
- Contains the Reference Model 2 (RM2) scaled scale geometry files of the River Current Turbine, developed by the Reference Model Project (RMP). These scaled geometry files are saved as SolidWorks assembly, IGS, and STEP files, and require a CAD program to view. The scaled RM2 device was tested at the Saint Anthony Falls Laboratory (SAFL) at the University of Minnesota flume. The scale of the geometries included in this submission are at a 1:15 scale compared to the full scale geometry. This data was generated upon completion of the project on September 30, 2014. The Reference Model Project (RMP), sponsored by the U.S. Department of Energy (DOE), was a partnered effort to develop open-source MHK point designs as reference models (RMs) to benchmark MHK technology performance and costs, and an open-source methodology for design and analysis of MHK technologies, including models for estimating their capital costs, operational costs, and levelized costs of energy. The point designs also served as open-source test articles for university researchers and commercial technology developers. The RMP project team, led by Sandia National Laboratories (SNL), included a partnership between DOE, three national laboratories, including the National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL), and Oak Ridge National Laboratory (ORNL), the Applied Research Laboratory of Penn State University, and Re Vision Consulting. Reference Model 2 (RM2) is a variable speed dual-rotor cross-flow river turbine that is deployed at the water?s surface. It was designed for deployment at a reference site modeled after a reach in the Mississippi River near Baton Rouge, Louisiana. The rotors are anchored to a two-pontoon vessel platform. Surface deployment of the turbine minimizes the handling requirements during deployment and recovery and reduces overall costs for all O&M activities, including allowing for easy access to the power conversion chain (PCC). The design (two rotors per platform) also reduces the environmental footprint and associated environmental compliance costs.1Licence not specifiedover 2 years ago
- This submission includes example files associated with the Geothermal Operational Optimization using Machine Learning (GOOML) Big Kahuna fictional power plant, which uses synthetic data to model a fictional power plant. A forecast was produced using the GOOML data model framework and fictional input data, and a genetic optimization is included which determines optimal flash plant parameters. The inputs and outputs associated with the forecast and genetic optimization are included. The input and output files consist of data, configuration files, and plots. A link to the Physics-Guided Neural Networks (phygnn) GitHub repository is also included, which augments a traditional neural network loss function with a generic loss term that can be used to guide the neural network to learn physical or theoretical constraints. phygnn is used by the GOOML framework to help integrate its machine learning models into the relevant physics and engineering applications. Note that the data included in this submission are intended to provide a demonstration of GOOML's capabilities. Additional files that have not been released to the public are needed for users to run these models and reproduce these results. Units can be found in the readme data resource.1Licence not specifiedover 2 years ago
- These data and test descriptions comprise a chilled circulation test conducted at the 164' fracture in the EGS Collab Experiment 1 testbed on the 4850 ft level of the Sanford Underground Research Facility. Descriptions of the meta data, design drawings for the flow testing system, and evaluation of the thermistor data are provided here. The test ran from April 2019 through early March of 2020, when testing was concluded at the experiment 1 site. These data are are complementary to the stimulation data provided in another submission which is linked below (i.e. stimulation at the 164' notch). More information about the test itself as well as the rationale and process of data processing is available on the EGS Collab Experiment 1 Long Term Circulation Test wiki page which is also linked below.1Licence not specifiedover 2 years ago
- The Bolivian governments concerns that are related to reducing the consumption of diesel fuel, which is imported, subsidized, and provided to isolated electric plants in rural communities, have led to the implementation of hybrid power systems. The data in this submissions was created to compare a photovoltaic (PV)/Stirling battery system to a more traditional (PV)/diesel/battery system. The data includes: - MATLAB Simulink model of a Parabolic dish-Stirling engine-battery system. - Input data (Meteorological and load demand) for El Carmen, Tablani, and Pojo Pata communities1Licence not specifiedover 2 years ago
- Mesh, properties, initial conditions, injection/withdrawal rates for modelling thermal, hydrological, and mechanical effects of fluid injection to and withdrawal from ground for Stockton University reservoir cooling system (aquifer storage cooling system), Galloway, New Jersey, for unscheduled two hour injection at 133 % designed capacity, on fine scale grid, with some results. Second simulation of J.T. Smith, E. Sonnenthal, P. Dobson, P. Nico, and M. Worthington, 2021. Thermal-hydrological-mechanical modeling of Stockton University reservoir cooling system, Proceedings of the 46th Workshop on Geothermal Reservoir Engineering, Stanford University, SGP-TR-218, from which Figures 6-9, pertain.1Licence not specifiedover 2 years ago
- Directional Cooling-Induced Fracturing (DCIF) experiments were conducted on three rectangular Westerly granite blocks (width=depth=4.0", height=2.0") which were preheated to 200, 400, and 600 degree C to induce damage (microcracks) with varying degrees. Liquid nitrogen was poured in a small, 1"-diameter copper cup attached to the top of the sample, and the resulting acoustic emissions (AEs) and temperature changes on the surface of the sample were monitored. The experiments were conducted under one selected biaxial stress (5.8MPa). The obtained AEs were used to determine the microcracking source locations and amplitude, and the associated moment tensors. The onset time of the AEs was correlated with the cooling temperature, which was used to show that the temperature at the onset of microcracking is not affected significantly by the preexisting damage, compared to the impact of the stress in the sample. Included in this submission are the animations of the AE locations and graphics displaying the measured temperature-AE activity changes for samples with different degrees of microcrack damage.1Licence not specifiedover 2 years ago
- Small Scale WEC Performance Modeling Data is performance data from downscaled models of common WEC devices and their calculated performance outputs. This data is used by the Small WEC interactive modeling tool hosted by PRIMRE. The devices include a point absorber, a two-body point absorber (RM3), an oscillating surge device (OSWEC), and an attenuator type device (McCabe Wave Pump). One of the primary use cases for this work is to give an easy way to compare power output for a variety of WECs and model sizes.1Licence not specifiedover 2 years ago
- **Overview** Sequence V: Tip Plate (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s, and the yaw angle was held at 0°. The blade pitch angle was 3°. The rotor rotated at 72 RPM. Blade pressure measurements were collected. The five-hole probes were removed and the plugs were installed. Plastic tape 0.03-mm-thick was used to smooth the interface between the plugs and the blade. The teeter dampers were replaced with rigid links, and these two channels were flagged as not applicable by setting the measured values in the data file to –99999.99 Nm. The teeter link load cell was pre-tensioned to 40,000 N. During post-processing, the probe channels were set to read -99999.99. The standard tip blocks were replaced with a tip plate to simulate the effect of an undeployed tip-mounted aerodynamic brake as shown in Appendix A. Note that the blade radius was not changed during post-processing so the pressure tap locations are at the same radial location, but the reference to 30% represents 30% of 5.029 m, not 4.943 m. Throughout this report, references to the blade span are made for the 5.029- m radius, not the 4.943-m radius. **Data Details** File naming information can be found in the attached Word document "Sequence V Filename Key", copied from the Phase VI Test Report.1Licence not specifiedover 2 years ago
- This submission contains information on thirty-six rock samples collected from San Emidio, Nevada during January, 2021 for Subtask 2.3 of the WHOLESCALE project. The following resources include a .zip of rock sample photos taken in the field, a .zip of rock sample photos taken in the laboratory at UW-Madison, and an excel catalog of rock samples with information on sample name, rock type, coordinates of sample location, structural measurements, field notes, observations for plug preparation (e.g., weathering, ability to be cut and cored), and rock descriptions. It should be noted that not every sample was photographed in the field. Names and descriptions of rock formation units are taken from Rhodes et al. (2011). The README.txt file is a description of this submission.1Licence not specifiedover 2 years ago
- **Overview** Sequences S, T, and U: Upwind, No Probes (F); Upwind 2° Pitch (F); Upwind 4° Pitch (F) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed ranged from 5 m/s to 25 m/s. Yaw angles of 0° to 180° were achieved for Sequence S, but the yaw angle remained at 0° for Sequences T and U. The blade tip pitch was 3° for Sequence S, 2° for Sequence T, and 4° for Sequence U. These three sequences were interleaved during testing because the pitch angle change was easily made by the turbine operator. The rotor rotated at 72 RPM. Blade pressure measurements were collected. The five-hole probes were removed and the plugs were installed. Plastic tape 0.03-mm-thick was used to smooth the interface between the plugs and the blade. The teeter dampers were replaced with rigid links, and these two channels were flagged as not applicable by setting the measured values in the data file to -99999.99 Nm. The teeter link load cell was pre-tensioned to 40,000 N. During post-processing, the probe channels were set to read -99999.99. In addition to the standard 30-second campaigns, yaw sweeps were done at 7 m/s and 10 m/s for the Sequence S configuration. These 6-minute campaigns were collected while the yaw drive rotated the turbine 360° at a rate of 1°/s. The file names for these campaigns use the letter designation, followed by two digits for wind speed, followed by YSU, followed by 00. **Data Details** File naming information can be found in the attached Word document "Sequence U Filename Key", copied from the Phase VI Test Report.1Licence not specifiedover 2 years ago
- **Overview** Sequence 5: Sweep Wind Speed (F,P) This test sequence used an upwind, rigid turbine with a 0° cone angle. The wind speed was ramped from 5 m/s to 25 m/s by the wind tunnel operator. This was repeated with a decreasing ramp. The yaw angle was maintained at 0°. The blade tip pitch was 3° or 6°. The rotor rotated at 72 RPM. Blade pressure and probe measurements were collected for both pitch angles. The five-hole probes were removed and the plugs were installed for another 3° pitch case. Plastic tape 0.03 mm thick was used to smooth the interface between the plugs and the blade. The teeter dampers were replaced with rigid links, and these two channels were flagged as not applicable by setting the measured values in the data file to –99999.99 Nm. The teeter link load cell was pre-tensioned to 40,000 N. During post-processing, the probe channels were set to read -99999.99. The 6- minute campaigns were named using the sequence designation 5, followed by DN or UP, which indicates the wind speed ramp direction. The next four digits are 0000, and the sequence digit is at the end. **Data Details** File naming information can be found in the attached Word document "Sequence 5 Filename Key", copied from the Phase VI Test Report.1Licence not specifiedover 2 years ago
- The NREL PVDAQ is a large-scale time-series database containing system metadata and performance data from a variety of experimental PV sites and commercial public PV sites. The datasets are used to perform on-going performance and degradation analysis. Some of the sets can exhibit common elements that effect PV performance (e.g. soiling). The dataset consists of a series of files devoted to each of the systems and an associated set of metadata information that explains details about the system hardware and the site geo-location. Some system datasets also include environmental sensors that cover irradiance, temperatures, wind speeds, and precipitation at the site.1Licence not specifiedover 2 years ago
- This paper presents the modeling methodology and performance evaluation of the resonance-enhanced dual-buoy WEC (Wave Energy Converter) by HEM (hydrodynamic & electro-magnetic) fully-coupled-dynamics time-domain-simulation program. The numerical results are systematically compared with the authors' 1/6-scale experiment. With a direct-drive linear generator, the WEC consists of dual floating cylinders and a moon-pool between the cylinders, which can utilize three resonance phenomena from moon-pool dynamics as well as heave motions of inner and outer buoys. The contact and friction between the two buoys observed in the experiment are also properly modeled in the time-domain simulation by the Coulomb-friction model. Moon-pool resonance peaks significantly exaggerated in linear potential theory are empirically adjusted through comparisons with measured values. A systematic comparative study between the simulations and experiments with and without PTO (power-take-off) is conducted, and the relative heave displacements/velocities and power outputs are well matched. Then, parametric studies are carried out with the simulation program to determine optimum generator parameters. The performance with various wave conditions is also assessed. Highlights: 1. Dual-cylinder wave energy converter with moon-pool is designed to use three resonances. 2. Interaction between the dual cylinder and the linear generator is solved in time domain. 3. The proposed simulation model correlated to the experiments provides coincided results with experiments. 4. Moon-pool and guiding mechanisms between the cylinders influence dynamic response and power notably. 5. Optimum parameters of the linear generator are found using the correlated model.1Licence not specifiedover 2 years ago
- The project this data comes from looks to make building wall retrofits less expensive and easier to install by using exterior insulating panels. This is done to make buildings more energy efficient without expensive wall retrofits or reconstruction. The "Measurement and Verification for Topic 1 Phase 1 Testing Guidance Draft" document includes the following: Standard Test Methods for Determining Thermal Performance: Controlled field testing and THERM simulations Standard Test Methods for Determining Air Leakage Rate: modified ASTM E779 Criteria for Moisture-Control Design Analysis in Buildings: WUFI simulations Moisture Management Plan: Relevant enclosure system design details. ABC Technology Scaling Framework: TRL characteristics relative to development phases Customer Discovery: Target customers and why they would buy/adopt the innovation. Also included in the submissions is the "Duct Blaster Test Report" from 8-25-2021 which includes a filled out test report form for a Duct Blaster which is used to directly pressure test a duct system for air leaks.1Licence not specifiedover 2 years ago
- In this paper, we present an analysis using unsupervised machine learning (ML) to identify the key geologic factors that contribute to the geothermal production in Brady geothermal field. Brady is a hydrothermal system in northwestern Nevada that supports both electricity production and direct use of hydrothermal fluids. Transmissive fuid-fow pathways are relatively rare in the subsurface, but are critical components of hydrothermal systems like Brady and many other types of fuid-fow systems in fractured rock. Here, we analyze geologic data with ML methods to unravel the local geologic controls on these pathways. The ML method, non-negative matrix factorization with k-means clustering (NMFk), is applied to a library of 14 3D geologic characteristics hypothesized to control hydrothermal circulation in the Brady geothermal field. Our results indicate that macro-scale faults and a local step-over in the fault system preferentially occur along production wells when compared to injection wells and non-productive wells. We infer that these are the key geologic characteristics that control the through-going hydrothermal transmission pathways at Brady. Our results demonstrate: (1) the specific geologic controls on the Brady hydrothermal system and (2) the efficacy of pairing ML techniques with 3D geologic characterization to enhance the understanding of subsurface processes. This submission includes the published journal article detailing this work, the published 3D geologic map of the Brady Geothermal Area used as a basis to develop structural and geological variables that are hypothesized to control or effect permeability or connectivity, 3D well data, along which geologic data were sampled for PCA analyses, and associated metadata file. This work was done using the GeoThermalCloud framework, which is part of SmartTensors (both are linked below).1Licence not specifiedover 2 years ago
- This project assessed the technical viability of a process called GeoCAES. The process stores electrical energy by injecting natural gas into shale gas formations using a compressor, storing it, and producing it through an expander to generate electricity. This data submission includes the models of temperature and pressure changes in the wellbore, surface plant equipment (compressor and expander), and the code used in CMG GEM reservoir modeling software to simulate injection and production. Note - the wellbore and surface plant equipment models use the REFPROP Excel Add-in from NIST (linked in submission) to calculate natural gas properties. Note - the reservoir model code requires a license for the Computer Modeling Group (CMG) GEM reservoir modeling software (linked in submission) to run it.1Licence not specifiedover 2 years ago
- This data submission includes the raw time-lapse ERT (electrical resistivity tomography) monitoring data, flow system data, operator logs, E4D (https://e4d.pnnl.gov) inversion files, and metadata necessary to reproduce the 4D ERT inversion for the Oct. 24 through Nov. 7 2018 post-stimulation flow test in test bed 1. The tests were done at the Sanford Underground Research Facility at Homestake Mine in South Dakota.1Licence not specifiedover 2 years ago
- Data collected during the 2016 St. Clair River installation of the Oscylator-4 energy converter.1Licence not specifiedover 2 years ago
- This reference database in RIS format contains all of the references that were collected as part of our retrospective analysis of geothermal mineral recovery (REE and Li) activities and domestic resource assessment. The outputs detail the chemistry and molecular processes used in lithium recovery from geothermal brines. The articles included include information about the study including more information on geothermal brines and the technologies used for recovering lithium from geothermal brines.1Licence not specifiedover 2 years ago
- Static and dynamic elastic properties (Young's modulus, Shear Modulus, P-wave Modulus, and Poisson's Ratio) of amphibolites and rhyolites from the TV4100 and TH4100 boreholes at the Sanford Underground Research Laboratory (SURF). Elastic properties include Young's modulus, Poisson's ratio, shear modulus, and p-wave modulus. Raw data from the experiments and slides describing the experimental procedure and a summary of results are included, along with a readme file with additional definitions and information.1Licence not specifiedover 2 years ago
- Collection of proposed, operating, demonstration, and pilot study potable reuse systems across the U.S. as of 2020. Information includes project name, location, augmentation type, capacity, year operational, treatment train, and source water type. References are included in this submission. As potable reuse facilities undergo expansions or upgrades, treatment trains and capacities are subject to change. Operational status may also change. Treatment trains listed are reported to the detail that the source provides. Type and doses of chemical post-treatment or chlorination is often not specified. Please see README section in spreadsheet for definitions of acronyms used.1Licence not specifiedover 2 years ago
- This is the current induced seismicity mitigation plan (ISMP) for the Utah FORGE project. Information that was collected during Phases 1 and 2 of the Utah FORGE project has been incorporated, as have literature searches and risk assessments. The purpose of this report is to identify and mitigate induced seismicity for the Utah FORGE Project. Mitigation includes preliminary screening, outreach, criteria for ground vibration and noise, data collection practices, and natural seismic hazard analysis. From this, the overall risk from the project was determined. This report is subject to change as new information comes to light.1Licence not specifiedover 2 years ago
- The United States is embarking on an ambitious transition to a 100% clean energy economy by 2050, which will require improving the flexibility of electric grids. One way to achieve grid flexibility is to shed or shift demand to align with changing grid needs. To facilitate this, it is critical to understand how and when energy is used. High quality end-use load profiles (EULPs) provide this information, and can help cities, states, and utilities understand the time-sensitive value of energy efficiency, demand response, and distributed energy resources. Publicly available EULPs have traditionally had limited application because of age and incomplete geographic representation. To help fill this gap, the U.S. Department of Energy (DOE) funded a three-year project, End-Use Load Profiles for the U.S. Building Stock, that culminated in this publicly available dataset of calibrated and validated 15-minute resolution load profiles for all major residential and commercial building types and end uses, across all climate regions in the United States. These EULPs were created by calibrating the ResStock and ComStock physics-based building stock models using many different measured datasets, as described in the "Technical Report Documenting Methodology" linked in the submission.1Licence not specifiedover 2 years ago
- NREL Modular Ocean Instrumentation System (MOIS) data files for the Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).1Licence not specifiedover 2 years ago
- NREL Modular Ocean Instrumentation System (MOIS) data files for the Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).1Licence not specifiedover 2 years ago
- The Geothermal Exploration Artificial Intelligence looks to use machine learning to spot geothermal identifiers from land maps. This is done to remotely detect geothermal sites for the purpose of energy uses. Such uses include enhanced geothermal system (EGS) applications, especially regarding finding locations for viable EGS sites. This submission includes the appendices and reports formerly attached to the Geothermal Exploration Artificial Intelligence Quarterly and Final Reports. The appendices below include methodologies, results, and some data regarding what was used to train the Geothermal Exploration AI. The methodology reports explain how specific anomaly detection modes were selected for use with the Geo Exploration AI. This also includes how the detection mode is useful for finding geothermal sites. Some methodology reports also include small amounts of code. Results from these reports explain the accuracy of methods used for the selected sites (Brady Desert Peak and Salton Sea). Data from these detection modes can be found in some of the reports, such as the Mineral Markers Maps, but most of the raw data is included the DOE Database which includes Brady, Desert Peak, and Salton Sea Geothermal Sites.1Licence not specifiedover 2 years ago
- Our GeoThermalCloud framework is designed to process geothermal datasets using a novel toolbox for unsupervised and physics-informed machine learning called SmartTensors. More information about GeoThermalCloud can be found at the GeoThermalCloud GitHub Repository. More information about SmartTensors can be found at the SmartTensors Github Repository and the SmartTensors page at LANL.gov. Links to these pages are included in this submission. GeoThermalCloud.jl is a repository containing all the data and codes required to demonstrate applications of machine learning methods for geothermal exploration. GeoThermalCloud.jl includes: - site data - simulation scripts - jupyter notebooks - intermediate results - code outputs - summary figures - readme markdown files GeoThermalCloud.jl showcases the machine learning analyses performed for the following geothermal sites: - Brady: geothermal exploration of the Brady geothermal site, Nevada - SWNM: geothermal exploration of the Southwest New Mexico (SWNM) region - GreatBasin: geothermal exploration of the Great Basin region, Nevada Reports, research papers, and presentations summarizing these machine learning analyses are also available and will be posted soon.1Licence not specifiedover 2 years ago
- These files contain the geodatabases related to the Desert Peak Geothermal Field. It includes all input and output files used in the project. The files include data categories of raw data, pre-processed data, and analysis (post-processed data). In each of these categories there are six additional types of raster catalogs including Radar, SWIR, Thermal, Geophysics, Geology, and Wells. The files for the Desert Peak Geothermal Site are used with the Geothermal Exploration Artificial Intelligence to identify indicators of blind geothermal systems. The included zip file is a geodatabase to be used with ArcGIS and the tar file is an inclusive database that encompasses the inputs and outputs for the Desert Peak Geothermal Field.1Licence not specifiedover 2 years ago
- This dataset contains a map, showing the Utah FORGE seismic stations, and seismic velocity model data. There are 61 1-D velocity models which are in a compressed TAR file. A paper is referenced at the end of this description which discusses the use of these data in 3D modelling. The paper summary follows: We expand the application of spatial autocorrelation (SPAC) from typical 1-D Vs profiles to quasi-3-D imaging via Bayesian Monte Carlo inversion (BMCI) using a dense nodal array (49 nodes) located at the Utah Frontier Observatory for Research in Geothermal Energy (FORGE) site. Combinations of 4 and 9 geophones in subarrays provide for 36 and 25 1-D Vs profiles, respectively. Profiles with error bars are determined by calculating coherency functions that fit observations in a frequency range of 0.2-5 Hz. Thus, a high-resolution quasi-3-D Vs model from the surface to 2.0 km depth is derived and shows that surface-parallel sedimentary strata deepen to the west, consistent with a 3-D seismic reflection survey. Moreover, the resulting Vs profile is consistent with a Vs profile derived from distributed acoustic sensing (DAS) data located in a borehole at the FORGE site. The quasi-3-D velocity model shows that the base of the basin dips ~22 degrees to the west and topography on the basement interface coincident with the Mag Lee Wash suggests that the bedrock interface is an unconformity. Reference: Zhang, H. and K. L. Pankow (2021). High-resolution Bayesian spatial auto-correlation (SPAC) pseudo-3D Vs model of Utah FORGE site with a dense geophone array, Geophys. Res. Int, https://doi.org/10.1093/gji/ggab0491Licence not specifiedover 2 years ago
- The submission includes the labeled datasets, as ESRI Grid files (.gri, .grd) used for training and classification results for our machine leaning model: - brady_som_output.gri, brady_som_output.grd, brady_som_output.* - desert_som_output.gri, desert_som_output.grd, desert_som_output.* The data corresponds to two sites: Brady Hot Springs and Desert Peak, both located near Fallon, NV. Input layers include: - Geothermal: Labeled data (0: Non-geothermal; 1: Geothermal) - Minerals: Hydrothermal mineral alterations, as a result of spectral analysis using Chalcedony, Kaolinite, Gypsum, Hematite and Epsomite - Temperature: Land surface temperature (% of times a pixel was classified as "Hot" by K-Means) - Faults: Fault density with a 300mradius - Subsidence: PSInSAR results showing subsidence displacement of more than 5mm - Uplift: PSInSAR results showing subsidence displacement of more than 5mm Also, the results of the classification using Brady and Desert Peak to build 2 Convolutional Neural Networks. These were applied to the training site as well as the other site, the results are in GeoTiff format. - brady_classification: Results of classification of the Brady-trained model - desert_classification: Results of classification of the Desert Peak-trained model - b2d_classification: Results of classification of Desert Peak using the Brady-trained model - d2b_classification: Results of classification of Brady using the Desert Peak-trained model1Licence not specifiedover 2 years ago
- This document describes the design requirements for the geothermal heat pump (GHP) module being added to the existing REopt Lite web tool. This document describes the purpose, users, and functional requirements to which the modified web tool shall conform. This document will be revised, as required, throughout the development phase with consensus between the Department of Energy (DOE) Geothermal Technologies Office (GTO) and NREL. The GHP module will expand existing REopt Lite capabilities to include techno-economic optimization of GHP systems, either stand alone, or integrated with the other existing technology types, namely solar photovoltaics (PV), wind power, battery energy storage, thermal energy storage, combined hear and power (CHP), and absorption chiller. Included in this submission are links to the REopt Lite web tool, API, and open-source Git-Hub page. The REopt Lite tool can also be accessed directly via the NREL Developer Network. A link is also provided for the REopt report that overviews the module's capabilities.1Licence not specifiedover 2 years ago
- Useful information and tools for calculating the Levelized Cost of Energy (LCOE) and MHK Cost Breakdown Structure. Includes a structure for calculating the capital expenditures and operating costs of a marine energy technology or device, reference resource data for both wave and tidal, and LCOE reporting guidance. These tools are meant to be used to help calculate the Levelized Cost of Energy (LCOE) for an MHK or MRE technology or device.1Licence not specifiedover 2 years ago
- SMU Geothermal Lab developed a methodology to estimate shallow (1 km to 4 km) Enhanced Geothermal Systems (EGS) resource potential using an approach that utilizes recent geology and geophysical research along with new well data to improve the thermal conductivity model, mitigate impacts from groundwater flow in the thermal model, and examine radioactivity data variations. By incorporating the results of the most recent projects with the SMU shallow methodology, we developed a more accurate, updated resource estimate for the Snake River Plain (SRP). The resulting maps and resource estimates can be used by the National Renewable Energy Lab (NREL), Bureau of Land Management (BLM), and the public to determine how best to move forward with future project development. This completed effort was funded under NREL contract DE-AC36-08GO28308 and coordinated by Amanda Kolker.1Licence not specifiedover 2 years ago
- This submission contains a link to two USGS data publications. Each data release contains all digital geographic data used and produced by the Snake River Plain Play Fairway Analysis for Phase 1 and Phase 2 (ArcGIS shapefiles and raster files) as well as the model processing script, tables, and documentation used to generate data outputs. Brief descriptions of data layers are in the metadata of GIS files. Greater detail is available in the Phase 1 and Phase 2 final reports (linked below). The citations for the favorability model data products are: Phase 1 DeAngelo, J., Shervais, J.W., Glen, J.M., Dobson, P.F., Liberty, L.M., Siler, D.L., Neupane, G., Newell, D.L., Evans, J.P., Gasperikova, E., Peacock, J.R., Sonnenthal, E., Nielson, D.L., Garg, S.K., Schermerhorn, W.D., and Earney, T.E., 2021, Snake River Plain Play Fairway Analysis Phase 1 Favorability Model (DE EE0006733): U.S. Geological Survey data release, https://doi.org/10.5066/P95EULTI. Phase 2 DeAngelo, J., Shervais, J.W., Glen, J.M., Dobson, P.F., Liberty, L.M., Siler, D.L., Neupane, G., Newell, D.L., Evans, J.P., Gasperikova, E., Peacock, J.R., Sonnenthal, E., Nielson, D.L., Garg, S.K., Schermerhorn, W.D., and Earney, T.E., 2021, Snake River Plain Play Fairway Analysis Phase 2 Favorability Model (DE EE0006733): U.S. Geological Survey data release, https://doi.org/10.5066/P9Y8MEZY.1Licence not specifiedover 2 years ago
- This submission includes two peer-reviewed papers from researchers at North Carolina State University presenting the modeling and lab-scale experimentation of the dynamics and control of a tethered tidal ocean kite. Below are the abstracts of each file included in the submission. Alvarez ECC: Flight and Tether Dynamics This paper models the dynamics of a marine tethered energy harvesting system focusing on exploring the sensitivity of the kite dynamics to tether parameters. These systems repetitively reels a kite out at high tension, then reels it in at low tension, in order to harvest energy. The kite?s high lift-to-drag ratio makes it possible to maximize net energy output through periodic cross-current flight. Significant modeling efforts exist in the literature supporting such energy maximization. The goal of this paper is to address the need for a simple model capturing the interplay between the system?s kite and tether dynamics. The authors pursue this goal by coupling a partial differential equation (PDE) model of tether dynamics with a point mass model of translational kite motion. Siddiqui JDSMC: Lab-scale closed-loop model and validation This paper presents a study wherein we experimentally characterize the dynamics and control system of a lab-scale ocean kite, and then refine, validate, and extrapolate this model for use in a full-scale system. Ocean kite systems, which harvest tidal and ocean current resources through high-efficiency cross-current motion, enable energy extraction with an order of magnitude less material (and cost) than stationary systems with the same rated power output. However, an ocean kite represents a nascent technology that is characterized by relatively complex dynamics and requires sophisticated control algorithms. In order to characterize the dynamics and control of ocean kite systems rapidly, at a relatively low cost, the authors have developed a lab-scale, closed-loop prototyping environment for characterizing tethered systems, whereby 3D printed systems are tethered and flown in a water channel environment.1Licence not specifiedover 2 years ago
- The 2018 Irrigation and Water Management Survey (formerly called the Farm and Ranch Irrigation Survey) is a follow-on to the 2017 Census of Agriculture by the U.S. Department of Agriculture (USDA). This survey provides the only comprehensive information on irrigation activities and water use across American farms, ranches, and horticultural operations. In responding to the survey, producers provide information on topics such as water sources and amount of water used, acres irrigated by type of system, irrigation and yield by crop, and system investments and energy costs. The full reports for the 2003, 2008, 2017, and 2018 surveys are provided in this submission. By following the link to the USDA Census of Irrigation, a specific year can be selected, in which the tables and figures of each report are provided.1Licence not specifiedover 2 years ago
- This submission presents results and observations from a series of surveys of US municipal desalination plants conducted during the last 20 years. The surveys were conducted to determine the number, characteristics, and concentrate disposal practices of US desalination plants. Each survey was intended to identify and contact each US plant that produces 25,000 gpd or more. This cutoff eliminated smaller plants that serve truck stops, mobile home parks, hospitals, campgrounds, etc. Succeeding surveys did not undertake to recontact all previously contacted plants but focused primarily on plants built since the initial survey.1Licence not specifiedover 2 years ago
- This dataset, compiled by NREL using data from [ABB, the Velocity Suite](http://energymarketintel.com/) and the [U.S. Energy Information Administration dataset 861](http://www.eia.gov/electricity/data/eia861/), provides average residential, commercial and industrial electricity rates with likely zip codes for both investor owned utilities (IOU) and non-investor owned utilities. Note: the files include average rates for each utility (not average rates per zip code), but not the detailed rate structure data found in the [OpenEI U.S. Utility Rate Database](https://openei.org/apps/USURDB/).1Licence not specifiedover 2 years ago
- Core logs and photos from the EGS Collab project Experiment 2 for the Top Vertical well (TV4100) and the Top Horizontal well (TV 4100) on the 4100 Level of SURF (the Sanford Underground Research Facility). The core logs are stored in a single PDF file with 5-ft run intervals. In the monitoring well IDs, "O" indicates that the well is orthogonal to the anticipated fracture plane, "T" refers to top, and "H" refers to horizontal. A core log CT scan for TV4100 and a layout image of the 4100 wells are included as well. Logs include: experiment number; borehole ID; depth interval; run number; final packed core box number; scribe line (yes/no; red-on-right convention); logging dates; logger initials; as well as sketches of core foliation, folding, and fracturing with additional details and notes on other features of interest. Shift reports include: date, location, personnel, summary of site activity, and field notes.1Licence not specifiedover 2 years ago
- The U.S. Geological Survey maintains national data bases of water-use information. The data are collected and compiled every five years for each State, the District of Columbia, Puerto Rico, and the U.S. Virgin Islands. County, state, and national water-use estimates may be downloaded from the National Water Information System Web (NWISWeb) interface, Water Data for the Nation, by selecting the Water Use button or data category pull-down. Data on NWISWeb represent the current best estimates, and may have been revised from previous publications. Data available from the USGS County Water-Use generally reflect the published report, and may have been revised in subsequent analyses. Note: State-level data from 1950-1980 and watershed data are not available on NWISWeb, but they can be downloaded USGS County Water-Use Data link.1Licence not specifiedover 2 years ago
- These data are from tidal resource characterization measurements collected between April and July 2017 in Western Passage near Eastport, Maine, USA. The dataset contains the following four sub-datasets, each of which is described in more detail in the README.pdf. 1. A bottom-mounted Teledyne RDI Workhorse 600 kHz acoustic Doppler current profiler (ADCP) was deployed at 44.92015 N, 66.98915 W in ~50 m of water from 3 April to 18 July (106 days). Data were recorded in 6-minute increments in the ENU (East, magnetic North, Up) coordinate system with bin-mapping enabled. 2. A bottom-mounted Nortek Signature 500 kHz ADCP was deployed at 44.92192 N, 66.98913 W in ~50 m of water from 4 April to 18 July (105 days). Data were sampled and recorded at 2 Hz and recorded in the ENU (East, magnetic North, Up) coordinate system. 3. Between those stations along a cross-channel transect, a Stable Tidal Turbulence Mooring (STTM) positioned ~10 m above the seabed was deployed for one week during a spring tide. The STTM was outfitted with two Nortek Vector acoustic Doppler velocimeters equipped with inertial motion units (ADVs), a bottom-tracking downward-looking Teledyne RDI Workhorse 600 kHz ADCP to provide motion-corrected flow and turbulence characteristics at high temporal resolution, and an upward-looking Teledyne RDI Sentinel V20 ADCP. The STTM was deployed at 44.92098 N, 66.98922 W from 24-31 May. 4. A vessel-mounted Teledyne RDI Workhorse 300 kHz ADCP collected current data along three transects over two days, 4-5 April. The data processing used DOLfYN version 0.11.2. All hdf5 files (i.e., files ending in `.h5`) contained here can be opened using that version of DOLfYN (e.g., `dat = dolfyn.load('')`). All distances are in meters (e.g., depth, range, MLLW, hab, eta, z_), and all velocities in m/s. See the DOLfYN documentation https://lkilcher.github.io/dolfyn/), and/or the Nortek and Teledyne RDI documentation for additional details. Additional details on the dataset can be found in the README.pdf, including: - Format details of each data file. - How to regenerate the data-processing (using the files in the `wp2017_processing.zip` archive).1Licence not specifiedover 2 years ago
- The over-arching project objective is to fully develop and validate optimal controls frameworks that can subsequently be applied widely to different WEC devices and concepts. Optimal controls of WEC devices represent a fundamental building block for WEC designers that must be considered as an integral part of every stage of device development. Using a building-blocks approach to optimal controls development, this effort will result in the full development of a feed-forward and feed-back control approach and a wave prediction system. Phase I focused primarily on numerical offline optimization and validation using wave tank testing of three industry partners? WEC devices, including CalWave, Ocean Energy, and Resolute Marine Energy. These industry partnerships allowed us to identify optimal control strategies for these different WEC topologies at different maturity levels. Phase II focused on demonstrating an integrated control system on a custom-built prototype for at-sea testing. A secondary focus during phase II is to adapt our systems identification, controls and wave-prediction frameworks to become more robust and comprehensive in respect to capability, robustness, and reliability. RE Vision Consulting leads this project and has compiled the final public domain report included in this submission.1Licence not specifiedover 2 years ago
- This report outlines the "MASK3" wave tank test within the Advanced WEC Dynamics and Controls (AWDC) project. This test represents the final test in the AWDC project. The focus of the MASK3 test was to consider coordinated 3-degree-of-freedom (3DOF) control of a WEC in a realistic ocean environment. A key aspect of this test was the inclusion of a "self-tuning" mechanism which uses an optimization algorithm to update controller gains based on a changing sea state. The successful implementation of the self-tuning mechanism is the last crucial step required for such a controller to be implemented in real ocean environments.1Licence not specifiedover 2 years ago
- The primary objective of this project is to develop a three-blade MHK rotor with low manufacturing and maintenance costs. The proposed program will design, fabricate and test a novel half-scale low cost, net shape fabricated single piece three-blade MHK rotor with integrated health management technology to demonstrate significant Capital Expenditures (CAPEX) and Operational Expenditures (OPEX) cost reductions due to the novel design and manufacturing process. The proposed project is divided into three major tasks: Task 1: Single Piece Three-blade Kinetic Hydropower System (KHPS) Rotor Full-Scale and Half-Scale Design; Task 2: Composite Manufacturing Trials and Half-Scale Prototype Rotor Fabrication; and Task 3: Material Characterization and Half-Scale Prototype Test and Evaluation. These three tasks include design and analysis of full-scale and half-scale three-blade rotor prototypes using computational fluid dynamics (CFD) and finite-element analysis (FEA), demonstration of a novel half-scale net shape fabrication process, determination of a fatigue threshold composite strain allowable, three-blade rotor mold design, manufacture of half-scale rotor clam shell mold, three-blade rotor test fixture design and fabrication, development of final manufacturing and test plans, manufacture of the half-scale net shape composite single blade and three-blade prototypes, and test and evaluation of the half-scale rotor.1Licence not specifiedover 2 years ago
- Wave tank tests at Stevens Institute of Technology quantified the ability of near-surface platforms to concentrate wave energy over the platform. Due to the instantaneous change in water depth, mass, energy, and power are conserved in this process. The energy and power concentration factors ranged from 1 to 4 times the incident wave power as a function of incident wave period, wave height, and platform depth. Platform slope was set to zero for all 300 plus wave runs at platform top surface depths varying from 0.15 m to 1.10 m. This data set is extremely valuable to the MHK industry as water particle velocities over the platform were recorded at velocities on the order of 4x incident maximum orbital velocities based on Airy/Navier-Stokes theory. This term has been used "A change in effective water depth over which waves propagate". The only way I have been able to get the data to align with Airy wave theory is to use the top of tension leg platform (TLP) depth and a wave height corresponding to the change in the free surface elevation over the platform. The discrete change in effective water depth over which waves propagate is a topic of interest for fundamental hydrodynamic research as this implies there is an instantaneous convergence of group and phase velocities of waves at the TLP edge which shears the incident waves. This high shear rate makes the inviscid and irrotational assumptions and potential flow analysis invalid. This data set can be used as part of benchmarking any CFD which may be used to analyze this flow field. Using the top of the TLP as the "h" and full free-surface elevation change over the platform for "H", the maximum orbital velocities measured align with Airy/Navier-Stokes equations. If the tank depth is used for "h", or incident wave height is used for "H", the equations do not align with the data. Note that the SurfWEC system involves a non-inertial reference frame as the fully-submerged TLP is continuously experiencing positive and negative accelerations in most wave conditions; therefore, when a spring-mass (regenerative AHC winch - float) system is used for PTO, the "pseudo" centrifugal force must be accounted for in the loading to the system.1Licence not specifiedover 2 years ago
- Starting in 2015 NREL has presented the Annual Technology Baseline (ATB) in an Excel workbook that contains detailed cost and performance data, both current and projected, for renewable and conventional technologies. The workbook includes a spreadsheet for each technology. This version of the workbook provides the final updates to data for the 2021 ATB. In 2019 and 2020, NREL has also provided selected data in Tableau workbooks and structured summary csv files. The data for 2015 - 2020 is located on https://data.nrel.gov. In 2021 and going forward, the data is cloud optimized and provided in the OEDI data lake. A website documents this and future data at https://atb.nrel.gov.1Licence not specifiedover 2 years ago
- This report outlines marine field demonstrations for manipulation tasks with a semi-Autonomous Underwater Vehicle (sAUV). The vehicle is built off a Seabotix vLBV300 platform with custom software interfacing it with the Robot Operating System (ROS). The vehicle utilizes an inertial navigation system available from Greensea Systems, Inc. based on a Gladiator Landmark 40 IMU coupled with a Teledyne Explorer Doppler Velocity Log to perform station keeping at a desired location and orientation. We performed two marine trials with the vehicle: a near-shore shared autonomy manipulation trial and an offshore attempted intervention trial. These demonstrations were designed to show the capabilities of our sAUV system for inspection and basic manipulation tasks in real marine environments.1Licence not specifiedover 2 years ago
- The University of Alaska Fairbanks (UAF) Alaska Hydrokinetic Energy Research Center was tasked with developing a real-time data telemetry / remote power generation system to monitor frazil ice conditions in the Kvichak River in support of the U.S. Department of Energy funded "Next Generation MHK River Power System Optimized for Performance, Durability and Survivability" project. A real-time telemetry system was requested because of the short time span between the end of the frazil ice season when the instruments would be recovered, limited vessel availability and the project end-date. To meet the project objectives, UAF designed and assembled a remote power/real-time data telemetry system that included an auto start propane generator, a small PV array, a small battery bank and line-of-sight radios as well as two sonar systems to monitor river velocity and water column acoustic backscatter strength. Both sonars included internal batteries for powering the instruments in case of failure of the shore based power system. The sonars, deployed in ~5 m of water on the bed of the Kvichak River, adjacent to the Village of Igiugig, Alaska were tethered to shore via a waterproof armored cable that conveyed power to the subsurface instruments and data from the instruments to the shore based telemetry system. The instruments were programmed to record data internally as well as to transmit data serially over the cables to the shore based system. The system was in-place between November, 2016 and June, 2017. While the real-time data telemetry system was not successful and the remote power generation power system was only partially successful, the system design included sufficient redundant power in the form of internal instrument batteries to enable the collection of nearly three months of overlapping velocity and backscatter data (from November through February) and a record of acoustic backscatter strength spanning the entire ~150 day frazil ice season between November, 2016 and ~April, 2017. This submission includes the overwinter ice study plan, dataset, and final report. The dataset includes modeled water velocity, discharge, and measured water velocity and acoustic backscatter strength in winter 2016-17 from the Kvichak River at the Village of Igiugig, Alaska, USA.1Licence not specifiedover 2 years ago
- The submission includes wave resource classification reports, summary of classification statistics and regional trends, and data files with classification statistics for selected sites for extreme significant wave height. Two conference papers were uploaded that include classification metrics and geographic distributions for US coastal waters. These conference papers are: Neary, V.S., Coe, R.G., Cruz, J., Haas, K., Bacelli, G., Debruyne, Y., Ahn, S., Nevarez, V. (2017) Classification systems for wave energy resources and WEC technologies. Proceedings of 12th European Wave and Tidal Energy Conference Series (EWTEC 2017), Cork, Ireland, August 27-September 1, 2017 Haas, K., Ahn, S., Neary, V.S., and S. Bredin (2017) Development of a wave energy classification system. Proceedings of the 5th Marine Energy Technology Symposium (METS2017), Washington, D.C., May 1-3, 20171Licence not specifiedover 2 years ago
- In 2008, the US Department of Energy (DOE) Wind and Water Power Program issued a funding opportunity announcement to establish university-led National Marine Renewable Energy Centers. Oregon State University and the University of Washington combined their capabilities in wave and tidal energy to establish the Northwest National Marine Renewable Energy Center, or NNMREC. NNMREC's scope included research and testing in the following topic areas: - Advanced Wave Forecasting Technologies; - Device and Array Optimization; - Integrated and Standardized Test Facility Development; - Investigate the Compatibility of Marine Energy Technologies with Environment, Fisheries and other Marine Resources; - Increased Reliability and Survivability of Marine Energy Systems; - Collaboration/Optimization with Marine Renewable and Other Renewable Energy Resources. To support the last topic, the National Renewable Energy Laboratory (NREL) was brought onto the team, particularly to assist with testing protocols, grid integration, and testing instrumentation. NNMREC's mission is to facilitate the development of marine energy technology, to inform regulatory and policy decisions, and to close key gaps in scientific understanding with a focus on workforce development. In this, NNMREC achieves DOE's goals and objectives and remains aligned with the research and educational mission of universities. In 2012, DOE provided NNMREC an opportunity to propose an additional effort to begin work on a utility scale, grid connected wave energy test facility. That project, initially referred to as the Pacific Marine Energy Center, is now referred to as the Pacific Marine Energy Center South Energy Test Site (PMEC-SETS) and involves work directly toward establishing the facility, which will be in Newport Oregon, as well as supporting instrumentation for wave energy converter testing. This report contains a breakdown per subtask of the funded project. Under each subtask, the following are presented and discussed where appropriate: the initial objective or hypothesis; an overview of accomplishments and approaches used; any problems encountered or departures from planned methodology over the life of the project; impacts of the problems or rescoping of the project; how accomplishments compared with original project goals; and deliverables under the subtasks. Products and models developed under the award are also included.1Licence not specifiedover 2 years ago
- Plans for Northwest National Marine Renewable Energy Center (NNMREC) Project. Mobile Ocean Test Berth (MOTB) plans PMEC-SETS Plans1Licence not specifiedover 2 years ago
- Data from Phase 1 testing of a single ALFA Oscillating Water Column (OWC) device at the O.H. Hinsdale Wave Research Laboratory (HWRL) at Oregon State University in Fall of 2016. Contains two zip files of raw data, one of project data, and a diagram of the device with dimensions. A "readme" file in the project data archive under "Docs" explains the project data.1Licence not specifiedover 2 years ago
- This data was recorded by the BOBr (Buoy to Observe Breaking) off the coast of Newport, OR at Agate Beach in the surf zone. The data was recorded by a 9dof inertial measurement unit and consists of a timestamp, quaternion orientation, acceleration vector, rotation vector, and magnetic vector. The acceleration, rotation, and magnetic vectors have all been corrected back to a North East Down reference frame.1Licence not specifiedover 2 years ago
- Attached are the .cas and .dat files for the Reynolds Averaged Navier-Stokes (RANS) simulation of a single full scale DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. In this case study taking advantage of the symmetry of the DOE RM1 geometry, only half of the geometry is modeled using (Single) Rotating Reference Frame model [RRF]. In this model RANS equations, coupled with k-\omega turbulence closure model, are solved in the rotating reference frame. The actual geometry of the turbine blade is included and the turbulent boundary layer along the blade span is simulated using wall-function approach. The rotation of the blade is modeled by applying periodic boundary condition to sets of plane of symmetry. This case study simulates the performance and flow field in both the near and far wake of the device at the desired operating conditions. The results of these simulations showed good agreement to the only publicly available numerical simulation of the device done in the NREL. Please see the attached paper.1Licence not specifiedover 2 years ago
- Attached are the .cas and .dat files for the Reynolds Averaged Navier-Stokes (RANS) simulation of a single lab-scaled DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. In this case study the flow field around and in the wake of the NREL Phase VI wind turbine, modeled is MHK turbine, is simulated using Actuator Disk Model (ADM) (a.k.a Porous Media) by solving RANS equations coupled with a turbulence closure model. It should be highlighted that in this simulation the actual geometry of the rotor blade is not modeled. The effect of turbine rotating blades are modeled using the Actuator Disk Theory (see the stated section of attached M.Sc. thesis for more details).1Licence not specifiedover 2 years ago
- Attached are the .cas and .dat files for the Reynolds Averaged Navier-Stokes (RANS) simulation of a single lab-scaled DOE RM1 turbine implemented in ANSYS FLUENT CFD-package. The lab-scaled DOE RM1 is a re-design geometry, based of the full scale DOE RM1 design, producing same power output as the full scale model, while operating at matched Tip Speed Ratio values at reachable laboratory Reynolds number (see attached paper). In this case study taking advantage of the symmetry of lab-scaled DOE RM1 geometry, only half of the geometry is models using (Single) Rotating Reference Frame model [RRF]. In this model RANS equations, coupled with k-\omega turbulence closure model, are solved in the rotating reference frame. The actual geometry of the turbine blade is included and the turbulent boundary layer along the blade span is simulated using wall-function approach. The rotation of the blade is modeled by applying periodic boundary condition to sets of plane of symmetry. This case study simulates the performance and flow field in the near and far wake of the device at the desired operating conditions. The results of these simulations were validated against in-house experimental data. Please see the attached paper.1Licence not specifiedover 2 years ago
- NREL Modular Ocean Instrumentation System (MOIS) data files for the Azura grid-connected deployment at the 30-meter berth of the US Navy's Wave Energy Test Site (WETS 30m Site) at the Kaneohe Marine Corps Base Hawaii (MCBH) on the windward (northeast) coast of the island of Oahu, HI. See general documentation describing specifics of the data files and formats in a separate NREL submission (linked below).1Licence not specifiedover 2 years ago
- The submission is the combined design report for the HydroAir Power Take Off (PTO). CAD drawings, circuit diagrams, design report, test plan, technical specifications and data sheets are included for the Main and auxiliary control cabinets and three-phase-synchronous-motor with a permanent magnet generator (PMG).1Licence not specifiedover 2 years ago
- Software developed in LabVIEW for the Modular Ocean Instrumentation System (MOIS) is provided. Two documents: MOIS User's Guide and MOIS Software Developer's Guide are included in the submission.1Licence not specifiedover 2 years ago
- Acoustic Doppler Current Profiler (ADCP) data from seafloor tripods in Admiralty Inlet, Puget Sound, Washington. Data collected from April 2009 through December 2012. When using the data, please cite the J. Oceanic Eng. paper included in this submission, and please contact Jim Thomson prior to submitting publications or conference abstracts that use the data.1Licence not specifiedover 2 years ago
- Analysis method to systematically identify all potential failure modes and their effects on the Stingray WEC system. This analysis is incorporated early in the development cycle such that the mitigation of the identified failure modes can be achieved cost effectively and efficiently. The FMECA can begin once there is enough detail to functions and failure modes of a given system, and its interfaces with other systems. The FMECA occurs coincidently with the design process and is an iterative process which allows for design changes to overcome deficiencies in the analysis. Risk Registers for major subsystems were completed in compliance with the DOE Risk Management Framework developed by NREL (document included below).1Licence not specifiedover 2 years ago
- The dataset consist of acoustic Doppler current profiler (ADCP) velocity measurements in the wake of a 3-meter diameter vertical-axis hydrokinetic turbine deployed in Roza Canal, Yakima, WA, USA. A normalized hub-centerline wake velocity profile and two cross-section velocity contours, 10 meters and 20 meters downstream of the turbine, are presented. Mean velocities and turbulence data, measured using acoustic Doppler velocimeter (ADV) at 50 meters upstream of the turbine, are also presented. Canal dimensions and hydraulic properties, and turbine-related information are also included.1Licence not specifiedover 2 years ago
- This data is from measurements at Admiralty Head, in Admiralty Inlet (Puget Sound) in May of 2015. The measurements were made using Inertial Motion Unit (IMU) equipped ADVs mounted on a 'StableMoor' (Manufacturer: DeepWater Buoyancy) buoy and a Tidal Turbulence Mooring (TTM). These platforms position ADV heads above the seafloor to make mid-depth turbulence measurements. The inertial measurements from the IMU allows for removal of mooring motion in post processing. The mooring and buoy motion has been removed from the stream-wise and vertical velocity signals (u, w). The lateral (v) velocity has some 'persistent motion contamination' due to mooring sway. The TTM was deployed with one ADV, it's position was: 48 09.145', -122 41.209' The StableMoor was deployed twice, the first time it was deployed in 'wing-mode' with two ADVs ('Port' and 'Star') at: 48 09.166', -122 41.173' The second StableMoor deployment was in 'Nose' mode with one ADV at: 48 09.166', -122 41.174' Units ----- - Velocity data (_u, urot, uacc) is in m/s. - Acceleration (Accel) data is in m/s^2. - Angular rate (AngRt) data is in rad/s. - The components of all vectors are in 'ENU' orientation. That is, the first index is True East, the second is True North, and the third is Up (vertical). - All other quantities are in the units defined in the Nortek Manual. Motion correction and rotation into the ENU earth reference frame was performed using the Python-based open source DOLfYN library (http://lkilcher.github.io/dolfyn/). Details on motion correction can be found there. Additional details on TTM measurements at this site can be found in the included Marine Energy Technology Symposium paper.1Licence not specifiedover 2 years ago
- This report documents the results of investigations dealing with the concentrations and availabilities of strategic, critical and valuable materials (SCVM) in produced waters from geothermal and hydrocarbon reservoirs (50-250 degrees C) in Idaho, Nevada, New Mexico, Oregon, and Utah. Analytical results were obtained for water samples from 47 production wells in 12 geothermal fields. Results were also obtained for samples from 25 oil/gas production wells in the Uinta and Paradox Basins and Covenant oil field, from 14 groundwater wells in the Tularosa play fairway (New Mexico), and from 20 groundwater wells and hot springs in the Sevier Thermal Belt (southwestern Utah). Please refer to GDR Submission 1126 (linked below) which houses the data summarized in the final report.1Licence not specifiedover 2 years ago
- Machine learning can be used to predict fault properties such as shear stress, friction, and time to failure using continuous records of fault zone acoustic emissions. The files are extracted features and labels from lab data (experiment p4679). The features are extracted with a non-overlapping window from the original acoustic data. The first column is the time of the window. The second and third columns are the mean and the variance of the acoustic data in this window, respectively. The 4th-11th column is the the power spectrum density ranging from low to high frequency. And the last column is the corresponding label (shear stress level). The name of the file means which driving velocity the sequence is generated from. Data were generated from laboratory friction experiments conducted with a biaxial shear apparatus. Experiments were conducted in the double direct shear configuration in which two fault zones are sheared between three rigid forcing blocks. Our samples consisted of two 5-mm-thick layers of simulated fault gouge with a nominal contact area of 10 by 10 cm^2. Gouge material consisted of soda-lime glass beads with initial particle size between 105 and 149 micrometers. Prior to shearing, we impose a constant fault normal stress of 2 MPa using a servo-controlled load-feedback mechanism and allow the sample to compact. Once the sample has reached a constant layer thickness, the central block is driven down at constant rate of 10 micrometers per second. In tandem, we collect an AE signal continuously at 4 MHz from a piezoceramic sensor embedded in a steel forcing block about 22 mm from the gouge layer The data from this experiment can be used with the deep learning algorithm to train it for future fault property prediction.1Licence not specifiedover 2 years ago
- This data is from measurements at Admiralty Head, in Admiralty Inlet. The measurements were made using an IMU equipped ADV mounted on a mooring, the 'Tidal Turbulence Mooring' or 'TTM'. The inertial measurements from the IMU allows for removal of mooring motion in post processing. The mooring motion has been removed from the stream-wise and vertical velocity signals (u, w). The lateral (v) velocity may have some 'persistent motion contamination' due to mooring sway. The ADV was positioned 11m above the seafloor in 58m of water at 48.1515N, 122.6858W. Units ------ - Velocity data (_u, urot, uacc) is in m/s. - Acceleration (Accel) data is in m/s^2. - Angular rate (AngRt) data is in rad/s. - The components of all vectors are in 'ENU' orientation. That is, the first index is True East, the second is True North, and the third is Up (vertical). - All other quantities are in the units defined in the Nortek Manual. Motion correction and rotation into the ENU earth reference frame was performed using the Python-based open source DOLfYN library (linked in resources). Details on motion correction can be found there. For additional details on this dataset see the included Marine Energy Technology Symposium paper.1Licence not specifiedover 2 years ago
- The primary objective of this research is to understand how different rock types, mineral and fluid compositions, and fracture surface textures determine the longevity of fracture apertures, so that selection of reservoir rock can be economically optimized to reduce future refracturing. We are performing laboratory tests to study this in a custom apparatus at conditions relevant to EGS, with temperatures up to 250 degrees C (design maximum 300 degrees C). Our approach is to perform a number of long term (up to several months) laboratory experiments using relevant rock samples with different mineralogies to explore fracture sustainability under EGS conditions. We use an apparatus that allows direct application of a normal force on the fracture faces of a single fracture in a sample having a sheared, tensile fracture. We flow brine of a specified composition through the aperture, and simultaneously measure the fracture permeability and closure. We collect the effluent water for chemical and isotopic analysis. We are numerically modeling our tests and comparing experimental and numerical results. This submission includes photomicrographs of pre-test (unreacted) and post-test (reacted) samples from Brady well BCH-03 at various depths, Desert Peak well DP 35-13, and samples of Stripa granite. The photomicrographs are provided using uncrossed and crossed polarized light (xpl). UN is uncrossed nicols, CN and xpl are crossed nicols (crossed polars). The magnification listed is just referring to the objective lens that was used, not the total magnification of the images. With a 5x objective, the bottom dimension of an image is 1.75 mm. With 10x the bottom dimension of an image is 0.875 mm, and with 2x the bottom dimension of an image is 4.375 mm.1Licence not specifiedover 2 years ago
- In this analysis, we outline the types of NEPA-related analyses and approvals (e.g., environmental assessment), and we provide examples of geothermal development activities (e.g., well drilling) that might require each type of approval, including an overview and discussion of the specific permits. We conducted an in-depth analysis of timelines specific to each NEPA analysis type, and we analyzed a sample of geothermal projects to identify factors that increased NEPA review timelines. Based on that analysis, we identified proven and potential strategies that can assist geothermal projects by lowering the time necessary to navigate the NEPA process, while maintaining the efficacy of the federal environmental review intact. We also identified areas of potential improvement in NEPA efficiency within each phase of geothermal development. Shortening project timelines can effectively decrease the perceived risk profiles of geothermal development projects. This submission includes a paper, poster, and presentation for the Geothermal Resources Council (GRC) summarizing geothermal permitting and NEPA timeline analysis. Also included are two spreadsheets detailing the NEPA timeline analysis and environmental assessments (EA).1Licence not specifiedover 2 years ago
- Pressure, temperature, and flow data from open-hole, upper perforation, and lower perforation well stimulations gathered from various tools collected at well 58-32 during phase 2C.1Licence not specifiedover 2 years ago
- This submission contains tarred pair directories for interferometric synthetic aperture radar (InSAR) data covering San Emidio Geothermal Field in Nevada, USA as part of the porotomo project. Data included within this submission are the following: > ENVI_T120_GDR.tgz: Tarred directory containing 39 Envisat track 120 tarred, pair subdirectories spanning from 2003-Oct-29 to 2010-Jun-09. > ENVI_T27_GDR.tgz: Tarred directory containing 32 Envisat track 27 tarred, pair subdirectories spanning from 2004-Jun-23 to 2010-Apr-28. > ERS_T27_GDR.tgz: Tarred directory containing 35 ERS track 27 tarred, pair subdirectories spanning from 1992-Jun-07 to 2000-Sep-27. > ENVI_T27_SQR_drange_utm_cut.grd: SqueeSAR-derived data product for Enivsat track 27 from Eneva, et al. (2011) (provided by TRE Altamira) in terms of unwrapped range change rate. > MSTvsSQR_GDR.tgz: Tarred directory containing Easting gradient files for each satellite and track corresponding to the MST data products and the SqueeSAR data products. > sanem_dem_utm.grd: Digital elevation model (DEM) used in the creation of the interferograms. Explanation of pair subdirectories (contained within ENVI_T120_GDR, ENVI_T27_GDR, ERS_T27_GDR): Pairs are chosen based on a minimum spanning tree (MST) algorithm with image quality (as measured by the amount of phase noise within an interferometric pair) as the weighting criterion. Pairs are formed using the InSAR processing software GMT5SAR (Sandwell et al., 2011). Pair subdirectories are named by starting and ending epochs in YYYYMMDD_YYYYMMDD format. Each tarred pair directory contains GRD files for wrapped phase data (radians) and wrapped phase data after application of a modified Goldstein filter that depends on coherence (Goldstein & Werner, 1997; Baran et al., 2003; Sandwell et al., 2011). The data are given in both latitude/longitude and Universal Transverse Mercator (Zone 11N). Raw Synthetic Aperture Radar (SAR) data from the Envisat and ERS satellite missions operated by the European Space Agency (ESA) are copyrighted by ESA and were provided through the WInSAR consortium at the UNAVCO facility.1Licence not specifiedover 2 years ago
- This submission contains tarred pair directories for interferometric synthetic aperture radar (InSAR) data covering Coso Geothermal Field in California, USA. Explanation of pair subdirectories: Pairs are formed using the InSAR processing software GMT5SAR (Sandwell et al., 2011). Pair subdirectories are named by starting and ending epochs in YYYYMMDD_YYYYMMDD format. Each tarred pair directory contains GRD files for phase data (radians), unwrapped range change (drhomaskd, in m), and unwrapped range change rate (drange, in m/yr). The data are given in both latitude/longitude and Universal Transverse Mercator (Zone 11N). Raw Synthetic Aperture Radar (SAR) data from the Envisat satellite mission operated by the European Space Agency (ESA) are copyrighted by ESA and were provided through the WInSAR consortium at the UNAVCO facility. Raw Synthetic Aperture Radar (SAR) data from the Sentinel-1A satellite mission operated by ESA were available free of charge through the Distributed Active Archive Center (DAAC) at the Alaska Satellite Facility (ASF) and through the Sentinels Scientific Data Hub. References: Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; Seal, D.; Shaffer, S.; Shimada, J.; Umland, J.; Werner, M.; Oskin, M.; Burbank, D.; Alsdorf, D. The Shuttle Radar Topography Mission. Reviews of Geophysics 2007, 45, RG2004. doi:10.1029/2005RG000183. Sandwell, D.; Mellors, R.; Tong, X.; Wei, M.; Wessel, P. Open radar interferometry software for mapping surface deformation. Eos, Transactions American Geophysical Union 2011, 92, 234?234. http://dx.doi.org/10.1029/2011EO280002. doi:10.1029/2011EO280002.1Licence not specifiedover 2 years ago
- This dataset consists of drilling data (Pason data spreadsheets, daily reports, days v. depth, mud logs), Schlumberger logs (FMI, shear anisotropy analysis, memory, sonic, array induction/spectral density/dual spaced neutron/gamma ray/caliper, spectral GR/temperature, and Gardner density correlation), and an end of well report (EOWR) for Utah FORGE well 56-32. This is a vertical well that will be used for seismic monitoring. It was drilled between February 7th and February 21st 2021 to a depth of 9,145 feet. More information about this well can be found at: https://utahforge.com/2021/02/09/drilling-progress-of-well-56-32/ (linked below)1Licence not specifiedover 2 years ago
- This file contains the first set of tracer data for the EGS Collab testbed. The first set of tracer tests were conducted during October-November, 2018. We have included tracer data for C-dots, chloride, fluorescein, and rhodamine-B. The details about the tracer test can be found in Background and Methods of Tracer Tests (Mattson et al. (2019)) (also included in this package). References Mattson, E.D., Neupane, G., Plummer, M.A., Hawkins, A., Zhang, Y. and the EGS Collab Team 2019. Preliminary Collab fracture characterization results from flow and tracer testing efforts. In Proceedings 44th Workshop on Geothermal Reservoir Engineering, edited, Stanford University, Stanford, California.1Licence not specifiedover 2 years ago
- This submission contains slow strain rates summed to radians over 30 second intervals [rad/s] derived from horizontal distributed acoustic sensing measurements (DASH) of Brady geothermal field during PoroTomo deployment (2016-Mar-14 to 2016-Mar-26). There is one file corresponding to each day written in *.mat format for use with Matlab. The format for the binary Matlab .mat files are defined at: https://www.mathworks.com/help/pdf_doc/matlab/matfile_format.pdf. One such file includes the following variables: 'flist': list of raw DASH files used in the summation 'time_tag_mdt': sample time tag in datetime format with hours given in 24-hr format (yyyy/MM/dd HH:mm:ss.SSSSSSS) 'time_tag_uts': sample time tag in Unix time 'strain_rate_summed_over30s_in_radians_per_second': slow strain rates summed over 30 second intervals in units rad/s 'sample_standard_deviation_in_radians_per_second': corresponding sample standard deviation of slow strain rates in units rad/s The PoroTomo final technical report, raw DASH data, and software repository are also available through the links below.1Licence not specifiedover 2 years ago
- The solid Earth strains in response to the gravitational pull from the Moon, Sun, and other planetary bodies. Measuring the flexure of geologic material in response to these Earth tides provides information about the geomechanical properties of rock and sediment. Such measurements are particularly useful for understanding dilation of faults and fractures in competent rock. A new approach to measuring earth tides using fiber optic distributed acoustic sensing (DAS) is presented here. DAS was originally designed to record acoustic vibration through the measurement of dynamic strain on a fiber optic cable. Here, laboratory experiments demonstrate that oscillating strain can be measured with DAS in the microHertz frequency range, corresponding to half-day (M2) lunar tidal cycles. Although the magnitude of strain measured in the laboratory is larger than what would be expected due to earth tides, a clear signal at half-day period was extracted from the data. With the increased signal-to-noise expected from quiet field applications and improvements to DAS using engineered fiber, earth tides could potentially be measured in deep boreholes with DAS. Because of the distributed nature of the sensor (0.25 m measurement interval over kilometers), fractures could be simultaneously located and evaluated. Such measurements would provide valuable information regarding the placement and stiffness of open fractures in bedrock. Characterization of bedrock fractures is an important goal for multiple subsurface operations such as petroleum extraction, geothermal energy recovery, and geologic carbon sequestration.1Licence not specifiedover 2 years ago
- This submission contains 167 deviatoric moment tensor (MT) solutions for the seismicity observed two years prior and three years post start of injection activities at The Geysers Prati 32 EGS Demonstration. Also included is a statistical representation of the properties of 751 fractures derived from the analysis of seismicity observed two years prior and three years post start of injection activities at The Geysers Prati 32 EGS Demonstration Project. The locations of the fractures are taken from microseismic hypocenters, the fracture areas are derived from moment magnitudes via scaling relationships, and the azimuths (sigma 1) and dips (sigma 3) are derived from the results of stress analyses.1Licence not specifiedover 2 years ago
- We summarized the FY17 and part of FY18 results of the analysis of the effect of several parameters (e.g., total dissolved solids, specific competing metals, pH, and temperature) on REE recovery from geothermal brine in a manuscript that was submitted to Environmental Science & Technology. In this manuscript, we investigate biosorption as a potential means of recovering REEs from geothermal fluids, a low-grade but abundant REE source. We have previously engineered E. coli to express lanthanide binding tags (LBTs) on the cell surface and the resulting strain showed an increase in both REE adsorption capacity and selectivity. Here we examined how REE adsorption by the engineered E. coli is affected by various geochemical factors relevant to geothermal fluids, including total dissolved solids (TDS), temperature, pH, and the presence of competing trace metals.1Licence not specifiedover 2 years ago
- The vast supply of geothermal energy stored throughout the Earth and the exceedingly long time required to dissipate that energy makes the world's geothermal energy supply nearly limitless. As such, this resource holds the potential to provide a large supply of the world's energy demands; however, like all natural resources, it must be utilized in an appropriate manner if it is to be sustainable. Understanding sustainable use of geothermal resources requires thorough characterization efforts aimed at better understanding subsurface properties. The goal of this work is to understand which critical subsurface properties exert the most influence on sustainable geothermal production as a means to provide targeted future resource characterization strategies. Borehole temperature and reservoir pressure data were analyzed to estimate reservoir thermal and hydraulic properties at an active geothermal site. These reservoir properties then served as inputs for an analytical model which simulated net power production over a 30-year period. The analytical model was used to conduct a sensitivity analysis to determine which parameters were most critical in constraining the sustainability of a geothermal reservoir. Modeling results reveal that the number of preferential flow pathways (i.e. fractures) used for heat transport provides the greatest impact on geothermal reservoir sustainability. These results suggest that early and pre-production geothermal reservoir exploration would achieve the greatest benefit from characterization strategies which seek to delineate the number of active flow pathways present in the system.1Licence not specifiedover 2 years ago
- Items in this submission provide the detailed design of the Aquantis Ocean Current Turbine and accompanying analysis documents, including preliminary designs, verification of design reports, CAD drawings of the hydrostatic drivetrain, a test plan and an operating conditions simulation report. This dataset also contains analysis trade off studies of fixed vs. variable pitch and 2 vs. 3 blades.1Licence not specifiedover 2 years ago
- Aquantis 2.5 MW Ocean Current Generation Device, Tow Tank Dynamic Rig Structural Analysis Results. This is the detailed documentation for scaled device testing in a tow tank, including models, drawings, presentations, cost of energy analysis, and structural analysis. This dataset also includes specific information on drivetrain, roller bearing, blade fabrication, mooring, and rotor characteristics.1Licence not specifiedover 2 years ago
- This submission contains 167 full moment tensor (MT) solutions for the seismicity observed two years prior and three years post start of injection activities. Also included are the azimuth and plunge angles for the three main stress directions sigma1, sigma 2 and sigma 3 at the Prati32 EGS demonstration site in the northwest Geysers geothermal reservoir. The data are divided into 15 time periods spanning a range of five years, including two years prior to start of injection until three years post start of injection activities.1Licence not specifiedover 2 years ago
- Stimulation data from Experiment 1 of EGS Collab, which occurred on the 4850 ft level of the Sanford Underground Research Facility (SURF). A detailed description of the stimulation data is provided in the StimulationDataNotes.docx and is also available on the EGS Collab Wiki. A Meta Data Cheat Sheet, which describes all of the channels in the Raw CSV files, is available as well. Note that this cheat sheet is a comprehensive meta data descriptor and channels were added as the experiment evolved. This means that some columns may not be populated in early data. Additionally, we have included the chat logs from these experiments. The experiments were broadcast over teleconferencing software and real-time data displays were available to remote observers. The logs contain important observations from those personnel performing the experiment and the remote contributors. Finally, we have included summary and individual plots of all of the data for the user to compare to.1Licence not specifiedover 2 years ago
- Characterizing the stimulation mode of a fracture is critical to assess the hydraulic efficiency and the seismic risk related to deep fluid manipulations. We have monitored the three-dimensional displacements of a fluid-driven fracture during water injections in a borehole at ~1.5 km depth in the crystalline rock of the Sanford Underground Research Facility (USA). The fracture initiates at 61% of the minimum horizontal stress by micro-shearing of the borehole on a foliation plane. As the fluid pressure increases further, borehole axial and radial displacements increase with injection time highlighting the opening and sliding of a new hydrofracture growing ~10 m away from the borehole, in accordance with the ambient normal stress regime and in alignment with the microseismicity. Our study reveals how fluid-driven fracture stimulation can be facilitated by a mixed-mode process controlled by the complex hydromechanical evolution of the growing fracture. The data presented in this submission refer to the SIMFIP measurements and analyses of the stimulation tests conducted on the 164 ft (50 m) notch of the Sanford Underground Research Facility (SURF), during the EGS-Collab test 1. In addition to the datafiles, there is the draft of a manuscript submitted to Geophysical Research Letters (GRL).1Licence not specifiedover 2 years ago
- Preliminary geothermal reservoir simulations were performed using a homogeneous static model to evaluate and understand the effects of fluid and rock properties that could influence the delivery of thermal energy in a doublet system. A 5000 feet by 5100 feet by 500 feet homogeneous model having a constant porosity and permeability of 20% and 100 mD was used to perform preliminary geothermal reservoir simulations. The model was discretized in the x-, y-, and z-directions into 100, 101, and 100, gridblocks. Two wells were placed on the opposite ends of the central column of the discretized model. One of the wells was designated as a producer and the other an injector. Equal volumes of water was extracted and then injected into the reservoir via the production and injection wells. Water was extracted at a temperature of 109 deg F and re-injected at 50 deg F at the 1000 bbl/day. The files attached contains the input and output files of this simulation case. The input and some of the output files can be viewed in any text editor.1Licence not specifiedover 2 years ago
- This package includes data and models that support hydraulic fracture stimulation and fluid circulation experiments in the Sanford Underground Research Facility (SURF). A paper by Schwering et al. (2020) describes the deterministic basis for developing a "common" discrete fracture network (CDFN) model of significant natural fractures in EGS Collab Testbed 1 on the 4850-Level of SURF. The ReadMe for this model shows drift, wells, scanlines, fracture data, interpreted fractures, and geophysical visualizations. There is also a summary of the data that was used in this experiment and includes results from reviewing core, televiewer (TV) logs, core-TV depth/feature registration, and from mapping weeps in the 4850-Level drift. The CDFN is intended to be a baseline model of the pre-stimulated testbed (though some observations from stimulation helped inform the model).1Licence not specifiedover 2 years ago
- This package contains a 3D Seismic velocity model and an updated microseismic catalog associated with a proceedings paper (Chai et al., 2020) published in the 45th Workshop on Geothermal Reservoir Engineering. The 3D_seismic_velocity_model text file contains x (m), y(m), z(m), P-wave velocity (km/s), P-wave velocity quality indicator (1 for well-constrained; 0 for poorly constrained), S-wave velocity (km/s), and S-wave velocity quality indicator (1 for well-constrained; 0 for poorly constrained). The Updated_MEQ_catalog text file contains event origin time, x(m), y(m), z(m), error in x (m), error in y (m), error in z (m), and RMS misfit (millisecond). The 3D_seismic_P-wave_velocity_model animation file shows slices of the 3D P-wave velocity model. The 3D_seismic_S-wave_velocity_model animation file shows slices of the 3D S-wave velocity model. The Interactive_MEQ_locations API file is an interactive visualization of the updated microseismic event locations. The visualization allows users to view the event locations by dragging, rotating, and zooming in. References: Chai, C., Maceira, M., Santos-Villalobos, H. J., Venkatakrishnan, S. V., Schoenball, M., and EGS Collab Team, 2020, Automatic Seismic Phase Picking Using Deep Learning for the EGS Collab Project, in PROCEEDINGS, 45th Workshop on Geothermal Reservoir Engineering, edited, Stanford University, Stanford, California, 45, 1266-1276.1Licence not specifiedover 2 years ago
- The following information is provided about the design of deeps wells constructed in the Illinois Basin to store, sequester, or dispose of CO2, natural gas, and industrial wastes.1Licence not specifiedover 2 years ago
- Links to papers and reports describing the structure and character of the Illinois Basin geology. Included are descriptions of the two reservoirs that are being modeled for the DDU feasibility project at University of Illinois, the St. Peter and Mt. Simon Sandstones.1Licence not specifiedover 2 years ago
- This dataset contains maps of deformation covering Raft River, Idaho from 2007 to 2010 calculated from interferometric synthetic aperture radar data. This dataset is used in the study entitled "Inferring geothermal reservoir processes at the Raft River Geothermal Field, Idaho, USA through modeling InSAR-measured surface deformation" by F. Liu, et al. This dataset was derived from raw SAR data from the Envisat satellite missions operated by the European Space Agency (ESA) that are copyrighted by ESA and were provided through the WInSAR consortium at the UNAVCO facility. All pair directories use the image acquired on 3/11/2007 as a reference image. To view specific information for each grd file, please use the GMT command "grdinfo" - e.g., for grd file In20070311_20071111/drho_utm.grd, use terminal command: grdinfo In20070311_20071111/drho_utm.grd1Licence not specifiedover 2 years ago
- The data includes the membrane properties and specifications used for multi-configuration membrane distillation desalination. In this study, membranes from CLARCOR, 3M, and Aquastill are tested in counter-current, co-current and air-gap configurations at Colorado School of Mines (CSM), Advanced Water technology Center ( Aqwatech) laboratories. In the data sheets: The "theoretical" worksheet, contains steady-state values of the experimental runs and also provides several calculated values. The "Specifications" worksheet contains the inputs to the experiment. The "Data" spreadsheet contains the entire set of data and the rest of the sheets "20-40", "20-45", ...etc., contain individual portions of the data with variation of feed temperatures.1Licence not specifiedover 2 years ago
- This submission contains the presentation slides and recordings from the first 98 EGS Collab Modeling and Simulation Working Group teleconferences. These teleconferences served three objectives for the project: 1) share simulation results, 2) communicate field activities and results to the simulation teams, and 3) hold open scientific discussions on EGS topics.1Licence not specifiedover 2 years ago
- This dataset contains all the inputs used and output produced from the modified GEOPHIRES for the economic analysis of base case hybrid GDHC system, improved hybrid GDHC system with heat pump and for hot water GDHC. Software required: Microsoft Notepad, Microsoft Excel and GEOPHIRES modified source code1Licence not specifiedover 2 years ago
- This regards a high-resolution DAS microseismic dataset produced by Silixa from Utah FORGE Phase 2C seismic monitoring well 78-32 during stimulation testing of well 58-32. It is a very large dataset and as such it is currently not directly available on GDR. However, it is available for download from the Center for High Performance Computing (CHPC) at the University of Utah using the shell script below. Additional survey information and tips for running the script are available in the attached downloadable Word Document file.1Licence not specifiedover 2 years ago
- Newly reprocessed Naval Air Station Fallon (1994) seismic lines: pre-stack depth migrations, with interpretations to support the Fallon FORGE (Phase 2B) 3D Geologic model. Data along seven profiles (>100 km of total profile length) through and adjacent to the Fallon site were re-processed. The most up-to-date, industry-tested seismic processing techniques were utilized to improve the signal strength and coherency in the sedimentary, volcanic, and Mesozoic crystalline basement sections, in conjunction with fault diffractions in order to improve the identification and definition of faults within the study area.1Licence not specifiedover 2 years ago
- The objective of this field test is to validate several technologies for non-invasive well integrity assessment using existing wells with a known completion. The tests were made at the Cymric oil field, which is a steam flood operation. The wells therefore undergo similar downhole conditions as geothermal wells. The Cymric field is mainly a cyclic steam operation where wells are 1000-15-00 ft in depth and the reservoir occupies the bottom 400ft. The maximum temperatures can exceed 500 degrees F and the well spacing is very close, often less than 50m. The field plan consisted of applying the Time Domain Reflectometry (TDR) method to the wells. The input voltages were set as 70 V shows the TDR responses at frequencies of 450 kHz, 2500 kHz, and 4500 kHz. There is a summary report will full information about the field tests.1Licence not specifiedover 2 years ago
- This submission supersedes pressure data from March 2017 which can be found as a link in the submission resources. This submission contains 3 .csv files with time series pressure data in 3 observation wells at Brady Geothermal Field as part of the PoroTomo project. These pressure files correct a time stamp issue that was in older data which did not correct for daylight savings time which occurred 13 Mar 2016 at 0900 UTC. The data here provides borehole pressures at different temperatures and times. The timeframe each resource was taken in varies between each resource and can be found in the resource descriptions.1Licence not specifiedover 2 years ago
- The Portland and Tualatin basins are part of the Puget-Willamette Lowland in the Cascadia forearc of Oregon and Washington. The Coast Range to the west has undergone Paleogene transtension and Neogene transpression, which is reflected in basin stratigraphy. To better understand the tectonic evolution of the region, Darby Scanlon modeled three key stratigraphic horizons and their associated depocenters (areas of maximum sediment accumulation) through space and time using well log, seismic, outcrop, aeromagnetic, and gravity data. Three isochore maps were created to constrain the location of Portland and Tualatin basin depocenters during 1) Pleistocene to mid-Miocene (0-15 Ma), 2) eruption of the Columbia River Basalt Group (CRBG, 15.5-16.5 Ma), and 3) MidMiocene to late Eocene time (~17-35 Ma). Results show that the two basins each have distinct mid-Miocene to Pleistocene depocenters. The depth to CRBG in the Portland basin reaches a maximum of ~1,640 ft, 160 ft deeper than the Tualatin basin. Although the Portland basin is separated from the Tualatin basin by the Portland Hills, inversion of gravity data suggests that the two were connected as one continuous basin prior to CRBG deposition. Local thickening of CRBG flows over a gravity low coincident with the Portland Hills suggests that Neogene transpression in the forearc reactivated the SylvanOatfield and Portland Hills faults as high angle reverse faults. This structural inversion separated the once continuous Portland and Tualatin basins in the mid-late Miocene. A change in the stress regime at that time marks the transition from Paleogene forearc extension to deformation dominated by north-south shortening due to collision of the forearc against the Canadian Coast Mountains. An eastward shift of the forearc basin ii depocenter over the Neogene likely reflects uplift of the Coast Range to the west. A change in regional stress in the mid to late-Miocene, along with uplift of the Oregon Coast Range, caused a 10-fold decrease in sediment accumulation rates across the Portland and Tualatin basins. Transpressional oblique-slip faulting continues to deform the region as the forearc undergoes clockwise rotation and collides with the rigid Canadian Coast Mountains to the north.1Licence not specifiedover 2 years ago
- Thermal property data for rocks and and minerals and unconsolidated (glacial) sediments units from within and outside the Illinois Basin were compiled for modeling heat transport in the subsurface.1Licence not specifiedover 2 years ago
- The objective of this project is to use a multi-disciplinary, three-tiered approach to assess the geothermal resource and determine the feasibility of implementing a large-scale, direct-use facility for the Hawthorne Army Depot (HAD) and the various town and county facilities in Hawthorne, Nevada. This assessment directly targets a geothermal resource recently characterized by the Navy Geothermal Program Office (GPO) as part of a focused exploration and development campaign. This data batch contains: Zip file containing well and water data from 2002, including reports, isotope analysis, shallow well data, and data by well; Zip folder containing 2009 GPO well data including well logs, geochemistry, and mud logs; Compiled data from 2010 in excel and word format; 2010 Final data from TG, well HAD-1; Zip file containing PDFs and Excel files for wells Haw1, HAD1, HWADD2-3, HWAD4-5; Zip folder containing Word docs and images pertaining to final well reports and discussion.1Licence not specifiedover 2 years ago
- The objective of this project is to use a multi-disciplinary, three-tiered approach to assess the geothermal resource and determine the feasibility of implementing a large-scale, direct-use facility for the Hawthorne Army Depot (HAD) and the various town and county facilities in Hawthorne, Nevada. This assessment directly targets a geothermal resource recently characterized by the Navy Geothermal Program Office (GPO) as part of a focused exploration and development campaign. This data set contains: Excel file of the temperature at depth logs; Zip file containing shapefiles of gravity magnitude and base data for the Hawthorne Geothermal area; Word doc files containing HWAD geothermal report, figures and local stratigraphy; Zip folder containing PDF files of relevant HWAD document; Zip folder containing JPEGs of the John Oldow maps; Zip folder containing MXDs, xls, and dbf files of the Hawthorne Geothermal area and figures; Zip folder containing Hawthorne Geothermal data from Epsilon1Licence not specifiedover 2 years ago
- Archive containing input/output data for distinct element reservoir modeling for Fallon FORGE. Models created using 3DEC, InSite, and in-house Python algorithms (ITASCA). List of archived files follows; please see 'Modeling Metadata.pdf' (included as a resource below) for additional file descriptions. Data sources include regional geochemical model, well positions and geometry, principal stress field, capability for hydraulic fractures, capability for hydro-shearing, reservoir geomechanical model-stimulation into multiple zones, modeled thermal behavior during circulation, and microseismicity.1Licence not specifiedover 2 years ago
- The data files below summarize the results from various experiments testing properties of high-temperature self-healing inorganic cement composites. These properties include cement-carbon steel bond strength, Young's modulus recovery, matrix recovery strength, and compressive strength and Yonug's modulus for cement composites modified with Pozzolanic Clay additives.1Licence not specifiedover 2 years ago
- The current uncertainty in the global supply of rare earth elements (REEs) necessitates the development of novel extraction technologies that utilize a variety of REE source materials. Herein, we examined the techno-economic performance of integrating a biosorption approach into a large-scale process for producing salable total rare earth oxides (TREOs) from various feedstocks. An airlift bioractor is proposed to carry out a biosorption process mediated by bioengineered rare earth-adsorbing bacteria. Techno-econmic asssements were compared for three distinctive categories of REE feedstocks requiring different pre-processing steps. Key parameters identified that affect profitability include REE concentration, composition of the feedstock, and costs of feedstock pretreatment and waste management. Among the 11 specific feedstocks investigated, coal ash from the Appalachian Basin was projected to be the most profitable, largely due to its high-value REE content. Its cost breakdown includes pre-processing (primarily leaching) (8077.71%), biosorption (1619.04%), and oxalic acid precipitation and TREO roasting (3.35%). Surprisingly, biosorption from the high-grade Bull Hill REE ore is less profitable due to high material cost and low production revenue. Overall, our results confirmed that the application of biosorption to low-grade feedstocks for REE recovery is economically viable.1Licence not specifiedover 2 years ago
- The objective of this project is to use a multi-disciplinary, three-tiered approach to assess the geothermal resource and determine the feasibility of implementing a large-scale, direct-use facility for the Hawthorne Army Depot (HAD) and the various town and county facilities in Hawthorne, Nevada. This assessment directly targets a geothermal resource recently characterized by the Navy Geothermal Program Office (GPO) as part of a focused exploration and development campaign. This data includes but is not limited to: OD Data, Map of Hawthorne Area 3D Seismic Survey, HAW 3D Seismic interpretation report, Zip folder containing DBF files pertaining to the Spring Well Seismic Survey Zone, Zip file containing one shapefile of 3D seismic data.1Licence not specifiedover 2 years ago
- Fallon FORGE InSAR and geodetic GPS deformation data. InSAR shapefiles are packaged together as .MPK (ArcMap map package, compatible with other GIS platforms), and as .CSV comma-delimited plaintext. GPS data and additional metadata are linked to the Nevada Geodetic Laboratory database at the Univ. of Nevada, Reno (UNR).1Licence not specifiedover 2 years ago
- Data, logs, and graphics associated with the drilling and testing of Utah FORGE deep test well 58-32 (MU-ESW1) near Roosevelt Hot Springs.1Licence not specifiedover 2 years ago
- This set of data contains raw and Initially-processed 2D and 3D seismic data from the Utah FORGE study area near Roosevelt Hot Springs. Reprocessed versions of these data can be accessed at the linked submission in the Resources section titled "Reprocessed Seismic Reflection Data." The zipped archives numbered from 1-100 to 1001-1122 contain 3D seismic uncorrelated shot gatherers SEG-Y files. The zipped archives numbered from 1-100C to 1001-1122C contain 3D seismic correlated shot gatherers SEG-Y files. Other data have intuitive names.1Licence not specifiedover 2 years ago
- This work was developed to complement the geochemical assessments of produced water and geothermal water samples. Specifically, this task was designed to test the influence of reservoir rock-type and corresponding mineralogy/geochemistry on the concentrations of REE found in oil and gas produced waters. There has been no direct investigation of REE reactions relative to rock-type in deep oil and gas brine prior to this investigation.1Licence not specifiedover 2 years ago
- This study is a joint effort by the University of Wyoming (UW), the UW Engineering Department (UW-ENG), and Idaho National Laboratories (INL) and the United States Geological Survey (USGS) to describe rare earth element concentrations in oil and gas produced waters. In this work we present the Rare Earth Element (REE) and trace metal character of produced water in several oil and gas fields and three coal fired power stations.1Licence not specifiedover 2 years ago
- This data characterizes binding of Zn2+ and Gd3+ to engineered nanosheets at 40C and in a brine solution. The engineered nanosheets are composed of surface-layer (S-layer) proteins which form 2 D crystalline sheets and display Zn2+- or Gd3+-binding domains on these sheets. Their ability to bind Zn2+ is compared to S-layer nanosheets that do not contain Zn2+-binding domains. We found that the purification method of these nanosheets was a critical determinant of their function and thus have provided data on the binding from two different purification methods. A key distinction of this dataset from other datasets is that the engineered nanosheets were expressed and purified from E. coli grown at 37C as described in (Kinns, 2010; Howorka, 2000), References: Kinns, H., et al. Identifying assembly-inhibiting and assembly-tolerant sites in the SbsB S-layer protein from Geobacillus stearothermophilus. Journal of Molecular Biology, 2010. 395(4): p. 742-753. Howorka, S., et al. Surface-accessible residues in the monomeric and assembled forms of a bacterial surface layer protein. Journal of Biological Chemistry, 2000. 275(48): p. 37876-37886.1Licence not specifiedover 2 years ago
- This is a zipped file containing raw magnetotelluric (MT) data collected as part of the Phase 2 Tularosa Basin geothermal play fairway analysis project in New Mexico. The data for each MT station are in standard .edi text files which are accompanied by graphic files illustrating details. These data cover part of McGregor Range, Fort Bliss, New Mexico. The MT survey was done by Quantec Geoscience.1Licence not specifiedover 2 years ago
- Links to URL's with latest time-series of GPS stations BRAD, BRDY and BRD11Licence not specifiedover 2 years ago
- The files in this submission describes the results of a series of stress measurement and hydraulic fracturing experiments conducted at the Sanford Underground Research Facility (SURF) in Lead, SD. This report describes the accomplishments of the kISMET (permeability (k) and Induced Seismicity Management for Energy Technologies) project. Five near-vertical boreholes were drilled and cored on the 4850 level of SURF in phyllite of the Precambrian Poorman Formation, and a series of hydraulic fracture experiments and stress measurements were conducted in the central borehole: the outer boreholes were used for monitoring purposes.1Licence not specifiedover 2 years ago
- The Mountain Home area is characterized by high heat flow and temperature gradient. Temperature data are available from 18 boreholes with depths equal to or greater than 200 m, 5 of which have depths ranging from ~1340 m to ~3390 m (MH-1, MH-2, Bostic1, Lawrence D No.1, and Anschutz No. 1). Although there are large variations, the average temperature gradient exceeds 80 deg C/km. Recently, high-resolution gravity, ground magnetic, magnetotelluric (MT), and seismic reflection surveys have been carried out in the area in order to define key structural features responsible for promoting permeability and fluid flow. Of particular relevance is the MT survey performed in the Mountain Home area. The included reports and papers present preliminary and final 3-D numerical models of the natural-state (i.e. pre-production state) of the Mountain Home geothermal area conditioned using the available temperature profiles from the five deep wells in addition to interpretations of MT data.1Licence not specifiedover 2 years ago
- These core photos and descriptions were taken from the five boreholes that were drilled as part of the kISMET SubTER project conducted at the Sanford Underground Research Facility (SURF) in Lead, SD. The boreholes are subvertical in orientation, and were drilled on the 4850 level of SURF on the West Drift, about 450 feet from Governor's Corner. The well heads for the five wells are in a line, but the outer two wells (k001 and k005) were deviated to form a five-spot configuration at 50 m depth. Four of the five boreholes have a nominal depth of 50 m and have HQ core - the fifth, located in the center (k003) was drilled to a depth of 100m and has NQ core. The central borehole was used for stress and hydraulic fracturing - the other four boreholes were used for monitoring purposes. Core logging was conducted by Paul Cook (LBNL), Bill Roggenthen (SDSMT), and Drew Siler (LBNL). All core consists of rocks from the Poorman Formation. Some of the core photos are missing. These have been documented in the included spreadsheets labeled with the well name and the word missing. The locations of the boreholes are documented on the included map and spreadsheet.1Licence not specifiedover 2 years ago
- Included are links to compressed InSAR pairs covering Brady Geothermal Field for TerraSAR-X (tracks 53, 91, and 167) and Sentinel-1A data. Pairs from the PoroTomo deployment period and pairs forming a minimum spanning tree according to perpendicular baseline are included for TerraSAR-X data. The digital elevation model used in the pair formations is included as well as text files containing unit vectors pointing from the ground to the satellite for each pair. The data is publicly accessible at the link "All InSAR Data" below.1Licence not specifiedover 2 years ago
- This submission includes raster datasets for each layer of evidence used for weights of evidence analysis as well as the deterministic play fairway analysis (PFA). Data representative of heat, permeability and groundwater comprises some of the raster datasets. Additionally, the final deterministic PFA model is provided along with a certainty model. All of these datasets are best used with an ArcGIS software package, specifically Spatial Data Modeler.1Licence not specifiedover 2 years ago
- These files contain the output of a model calculation to simulate the pressure and temperature of fluid at Brady Hot Springs, Nevada, USA. The calculation couples the hydrologic flow (Darcy's Law) with simple thermodynamics. The epoch of validity is 24 March 2015. Coordinates are UTM Easting, Northing, and Elevation in meters. Temperature is specified in degrees Celsius. Pressure is specified in Pascal.1Licence not specifiedover 2 years ago
- This submission includes composite risk segment models in raster format for permeability, heat of the earth, and MT, as well as the final PFA model of geothermal exploration risk in Southwestern Utah, USA. Additionally, this submission has data regarding hydrothermally altered areas, and opal sinter deposits in the study area. All of this information lends to the understanding and exploration for hidden geothermal systems in the area.1Licence not specifiedover 2 years ago
- These brine samples are collected from the Soda Geyser (a thermal feature, temperature ~30 C) in Soda Springs, Idaho. These samples also represent the overthrust brines typical of oil and gas plays in western Wyoming. Samples were collected from the source and along the flow channel at different distances from the source. By collecting and analyzing these samples we are able to increase the density and quality of data from the western Wyoming oil and gas plays. Furthermore, the sampling approach also helped determine the systematic variation in REE concentration with the sampling distance from the source. Several geochemical processes are at work along the flow channels, such as degassing, precipitation, sorption, etc.1Licence not specifiedover 2 years ago
- This submission contains raster files associated with several datasets that include earthquake density, Na/K geothermometers, fault density, heat flow, and gravity. Integrated together using spatial modeler tools in ArcGIS, these files can be used for play fairway analysis in regard to geothermal exploration.1Licence not specifiedover 2 years ago
- This submission contains multiple excel spreadsheets and associated written reports. The datasets area are representative of shallow temperature, geochemistry, and other well logging observations made across WSMR (white sands missile range); located to the west of the Tularosa Basin but still within the study area. Written reports accompany some of the datasets, and they provide ample description of the methodology and results obtained from these studies. Gravity data is also included, as point data in a shapefile, along with a written report describing that particular study.1Licence not specifiedover 2 years ago
- This is a digitized geologic map, in shapefile format, including rock unit lithological descriptions, faults, and dikes.1Licence not specifiedover 2 years ago
- Presentation given to National Groundwater Association meeting on deep basin brines. This presentation discusses why produced waters are being observed, the importance of REE's, the study areas examined, the data collected, and the relationship between REE concentration and possible ligands.1Licence not specifiedover 2 years ago
- Update of rare earth element data from oil and gas reservoirs. These data include major, minor, trace and rare earth element concentration of geologic formations in Wyoming oil and gas fields.1Licence not specifiedover 2 years ago
- Updated version of data generated from rare earth element investigation of produced waters. These data represent major, minor, trace, isotopes, and rare earth element concentrations in geologic formations and water associated with oil and gas production.1Licence not specifiedover 2 years ago
- This study is part of a joint effort by the University of Wyoming (UW) School of Energy Resources (SER), the UW Engineering Department, Idaho National Laboratories (INL), and the United States Geological Survey (USGS) to describe rare earth element concentrations in oil and gas produced waters and in coal-fired power station ash ponds. In this work we present rare earth element (REE) and trace metal behavior in produced water from four Wyoming oil and gas fields and surface ash pond water from two coal-fired power stations. Using the methods of the INL team members, we measured REEs in high salinity oil and gas produced waters. Our results show that REEs exist as a dissolved species in all waters measured for this project, typically within the parts per trillion range.1Licence not specifiedover 2 years ago
- California State University Long Beach evaluated hydraulic connectivity among geothermal wells using Periodic Hydraulic Testing (PHT) and Distributed Acoustic Sensing (DAS). The principal was to create a pressure signal in one well and observe the responding pressure signals in one or more observation wells to assess the permeability and storage of the fracture network that connects the two wells. DAS measured strain at mHz frequency in monitoring wells in response to PHT.1Licence not specifiedover 2 years ago
- This report details all of the work done in Phase 2 of a geothermal exploration project in Tularosa Basin, New Mexico. Data acquired as part of Phase 2 includes field geology (geological reconnaissance and mapping), gravity surveys, shallow temperature surveys, well water sampling and geothermometry, temperature logging, and magnetotelluric (MT) surveys. The new data is incorporated into new PFA models and Phase 2 plays were subsequently developed, ranked, and prioritized. This report also presents an overview of recommendations and costs for the next phase.1Licence not specifiedover 2 years ago
- This work evaluates, develops and demonstrates flexible, scalable mineral extraction technology for geothermal brines based upon solid phase sorbent materials with a specific focus upon rare earth elements (REEs). The selected organic and inorganic sorbent materials demonstrated high performance for collection of trace REEs, precious and valuable metals beyond commercially available sorbents. This report details the organic and inorganic sorbent uptake, performance, and collection efficiency results for La, Eu, Ho, Ag, Cu and Zn, as well as the characterization of these select sorbent materials. The report also contains estimated costs from an in-depth techno-economic analysis of a scaled up separation process. The estimated financial payback period for installing this equipment varies between 3.3 to 5.7 years depending on the brine flow rate of the geothermal resource.1Licence not specifiedover 2 years ago
- These data include major, minor, trace and rare earth element concentration of geologic formations in Wyoming oil and gas fields. *Note - Link below contains updated version of spreadsheet (6/14/2017)1Licence not specifiedover 2 years ago
- These data represent major, minor, trace, isotopes, and rare earth element concentrations in geologic formations and water associated with oil and gas production. *Note - Link below contains updated version of spreadsheet (6/14/2017)1Licence not specifiedover 2 years ago
- This submission includes links to raw data, field notes, metadata, and p-wave arrival auto-picks from processed data (not provided) from the nodal seismometer array deployed at the PoroTomo Natural Laboratory in Brady's Hot Springs, Nevada during the March 2016 testing. The data is available as continuous or windowed (to vibroseis sweep) files and is stored in an AWS S3 bucket. Note: No raw data was recovered from stations 73 and 82. These data are available for download without login credentials through the free and publicly accessible Open Energy Data Initiative (OEDI) data viewer which allows users to browse and download individual or groups of files.1Licence not specifiedover 2 years ago
- The Geothermal Resource Portfolio Optimization and Reporting Tool (GeoRePORT) was developed as a way to distill large amounts of geothermal project data into an objective, reportable data set that can be used to communicate with experts and non-experts. GeoRePORT summarizes (1) resource grade and certainty and (2) project readiness. This Excel file allows users to easily navigate through the resource grade attributes, using drop-down menus to pick grades and project readiness, and then easily print and share the summary with others. This spreadsheet is the first draft, for which we are soliciting expert feedback. The spreadsheet will be updated based on this feedback to increase usability of the tool. If you have any comments, please feel free to contact us.1Licence not specifiedover 2 years ago
- A presentation with notes showing an overview of the last 6 months of the project on high-temperature self-healing inorganic cement composites. General approach, test methods and results for the self-healing cement composites are presented. Data include strength recoveries for 9 cement composites in three curing environments (water, alkali carbonate, brine) at 300 degC, bond strength measurements for cement/carbon steel samples, thermal shock tests, performance of healing aids. The presentation was shown during the joint SPE/GRC workshop on March 22 in San Diego, California1Licence not specifiedover 2 years ago
- Links to URL's with latest time-series of GPS stations BRAD, BRDY, and BRD1. Text files containing links to URL's (i.e., ftp location) of GPS RINEX files archived since last report (1/18/2017).1Licence not specifiedover 2 years ago
- The U.S. Department of Energy Geothermal Vision (GeoVision) Study is currently looking at the potential to increase geothermal deployment in the U.S. and to understand the impact of this increased deployment. This paper reviews 31 performance, cost, and financial parameters as input for numerical simulations describing GDH system deployment in support of the GeoVision effort. The focus is on geothermal district heating (GDH) systems using hydrothermal and Enhanced Geothermal System resources in the U.S.; ground-source heat pumps and heat-to-electricity conversion technology were excluded. Parameters investigated include: 1) capital and operation and maintenance costs for both subsurface and surface equipment; 2) performance factors such as resource recovery factors, well flow rates, and system efficiencies; and 3) financial parameters such as inflation, interest, and tax rates. Current values as well as potential future improved values under various scenarios are presented. Sources of data considered include academic and popular literature, software tools such as GETEM and GEOPHIRES, industry interviews, and analysis conducted by other task forces for the GeoVision Study, e.g., on the drilling costs and reservoir performance.1Licence not specifiedover 2 years ago
- *This submission provides corrections to GDR Submissions 844 and 845* Poroelastic Tomography (PoroTomo) by Adjoint Inverse Modeling of Data from Hydrology. The 3 *csv files containing pressure data are the corrected versions of the pressure dataset found in Submission 844. The dataset has been corrected in the sense that the atmospheric pressure has been subtracted from the total pressure measured in the well. Also, the transducers used at wells 56A-1 and SP-2 are sensitive to surface temperature fluctuations. These temperature effects have been removed from the corrected datasets. The 4th *csv file contains corrected version of the pumping data found in Submission 845. The data has been corrected in the sense that the data from several wells that were used during the PoroTomo deployment pumping tests that were not included in the original dataset has been added. In addition, several other minor changes have been made to the pumping records due to flow rate instrument calibration issues that were discovered.1Licence not specifiedover 2 years ago
- This submission includes an Electricity Generation Summary, Maintenance Logs, Detailed Operations Data, Operating Cost Summary, and an Operations overview at the Paisley Oregon Geothermal Plant. Data uploaded for SVEC by Tom Williams, NREL1Licence not specifiedover 2 years ago
- An updated database of geothermal direct-use systems in the U.S. has been compiled and analyzed, building upon the Oregon Institute of Technology (OIT) Geo-Heat Center direct-use database. Types of direct-use applications examined include hot springs resorts and pools, aquaculture farms, greenhouses, and district heating systems, among others; power-generating facilities and ground-source heat pumps were excluded. Where possible, the current operation status, open and close dates, well data, and other technical data were obtained for each entry. The database contains 545 installations, of which 407 are open, 108 are closed, and 30 have an unknown status. A report is also included which details and analyzes current geothermal direct-use installations and barriers to further implementation.1Licence not specifiedover 2 years ago
- Chemical reactions pose an important but poorly understood threat to EGS long-term success because of their impact on fracture permeability. This report summarizes the dissolution rate equations for layered silicates where data were lacking for geothermal systems. Here we report updated rate laws for chlorite (Carroll and Smith 2013), biotite (Carroll and Smith, 2015), illite (Carroll and Smith, 2014), and for muscovite. Also included is a spreadsheet with rate data and rate equations for use in reactive transport simulators.1Licence not specifiedover 2 years ago
- Preliminary monitoring and analyses for the Utah FORGE Milford Site. Includes a report detailing the seismic monitoring goals and results, a detailed techno-economic infrastructure assessment with an analysis, a budget, schedules, and cost summaries, and a summary of environmental impacts.1Licence not specifiedover 2 years ago
- This submission contains Downhole geophysical logs associated with Wister, CA Wells 12-27 and 85-20. The logs include Spontaneous Potential (SP), HILT Caliper (HCAL), Gamma Ray (GR), Array Induction (AIT), and Neutron Porosity (NPOR) data. Also included are a well log, Injection Test, Pressure Temperature Spinner log, shut in temperature survey, a final well schematic, and files about the well's location and drilling history. This submission also contains data from a three-dimensional (3D) multi-component (3C) seismic reflection survey on the Wister Geothermal prospect area in the northern portion of the Imperial Valley, California. The Wister seismic survey area was 13.2 square miles. (Resistivity image logs (Schlumberger FMI) in 85-20 indicate that maximum horizontal stress (Shmax) is oriented NNE but that open fractures are oriented suboptimally).1Licence not specifiedover 2 years ago
- Light Detection and Ranging (LiDAR) data for the Maui study area in South Maui, collected by Watershed Sciences, Inc. (WS) on October 29th, 2011 and from November 7th, 2011 to November 10th, 2011.1Licence not specifiedover 2 years ago
- Contains a ground-based gravity survey of South Maui and a series of soil CO2 flux and temperature surveys encompassing Maui and the Big Island. The gravity survey was collected from approximately 284 km2 and consisted of 400 gravity stations with 400 m spacing. Locations were derived with full DGPS. Station and line location, Complete Bouger Anomaly, first vertical derivative and horizontal gradient maps were calculated and produced. The soil CO2 flux and temperature surveys were conducted on the islands of Hawaii and Maui in April and July 2010. Average soil temperatures were measured over 10 cm depth using a hand-held thermocouple. Soil CO2 fluxes were measured using a portable accumulation chamber instrument.1Licence not specifiedover 2 years ago
- Map, image, and data files, and a summary report of a high-resolution aeromagnetic survey of southern Maui, Hawai'i completed by EDCON-PRJ, Inc. for Ormat Nevada Inc using an helicopter and a towed sensor array.1Licence not specifiedover 2 years ago
- This is a final report summarizing a two-year (2014-16) DOE funded Geothermal Play Fairway Analysis of the Low-Temperature resources of the Appalachian Basin of New York, Pennsylvania and West Virginia. Collaborators included Cornell University, Southern Methodist University, and West Virginia University. As a result of the research, 'play fairways' were identified for further study, based on four risk criteria: 1) the Thermal Resource Quality, 2) the Natural Reservoir Quality, 3) the Risk of Seismic Activity, and the 4) Utilization Viability. In addition to the final report document, this submission includes project 'memos' referred to throughout the report. Many of these same memos are also provided in the submissions with the detailed data products accompanying the relevant risk factor (thermal, reservoir, seismicity, and utilization). This report updates a preliminary version submitted in late 2015 (Submission 559 - See "Reservoir Analysis 2015" below) This file presents the Final Report and Supporting Documents for a Geothermal Play Fairway Analysis of the Appalachian Basin sectors of New York, Pennsylvania and West Virginia. The purpose of this Department of Energy funded effort was to assess the potential for viable low temperature (50-150 degrees C) geothermal energy exploration and development using the methods of Play Fairway Analysis. The resources analyzed occur at depths of 1000 m and greater below the surface, and the application scenarios considered are for direct utilization of the heat. This report illustrates the lateral variability of each of the four risk criteria. This report also illustrates multiple alternative methods to combine those factors in order to communicate the estimated overall favorability of geothermal development. Uncertainty in the risk estimation is also quantified. Based on these metrics, geothermal plays in the Appalachian Basin were identified as potentially viable for a variety of direct-use-heat applications. The methodologies developed in this project and presented in this report may be applied in other sedimentary basins as a foundation for geothermal resource, risk, and uncertainty assessment. Accompanying this report is an Appendix that describes in greater detail the methods used in the analysis, and 17 other technical memos that document criteria, methods and decisions on which the final product was built.1Licence not specifiedover 2 years ago
- Mineralogical, lithological, and geospatial data of drill cuttings from exploration production wells in Beowawe, Dixie Valley and Roosvelt Hot Springs. These data support whole rock analyses for major, minor and critical elements to assess critical metals in produced fluids from Nevada and Utah geothermal fields. The samples were analyzed by x-ray diffraction (legacy data) and then checked by thin section analysis.1Licence not specifiedover 2 years ago
- A corrigendum was submitted to the journal of Geothermics on our article "Environmentally friendly, rheoreversible, hydraulic-fracturing fluids for enhanced geothermal systems" Shao et al Geothermics 58 (2015) 22-31. In the original article some permeability values were underestimated, in particular, for rock samples fractured by the stimuli-responsive fracking fluid (PAA-CO2). In addition, effective pressures were determined to be lower for three control experiments (deionized water-carbon dioxide, DIW-CO2). Therefore, we revised values of permeability and effective pressure as well as performed additional lab-scale stimulation experiments under identical conditions to further verify/update the deductions presented in the discussion section. This is the reason for the additional data introduced in the below Table 1 (grey color). The authors regret the following inadvertent errors and corresponding modifications. These modifications do not change the scientific conclusions of the article.1Licence not specifiedover 2 years ago
- Links to URL's with latest time-series of GPS stations BRAD, BRDY and BRD1 Files with links to URL's (i.e., ftp location) of GPS RINEX files archived since last report.1Licence not specifiedover 2 years ago
- Study on the use of organic ligands to extract lanthanides from low temperature geothermal water.1Licence not specifiedover 2 years ago
- Polymer-cement experiments were conducted in order to assess the chemical and thermal properties of various polymer-cement composites. This file set includes the following polymer-cement analyses: Polymer-Cement Composite Synthesis Polymer-Cement Interactions by Atomistic Simulations Polymer-Cements Compressive Strength & Fracture Toughness Polymer-Cements Fourier Transform Infrared Spectroscopy (FTIR) Analysis Polymer-Cements Resistance to Thermal Shock-CO2 and H2SO4 Attack Polymer-Cements Rheology Analysis Polymer-Cements Self-Repairing Permeability Analysis Polymer-Cements Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy (SEM-EDX) Compositional Analysis Polymer-Cements Thermogravimetric Analysis (TGA) and Total Organic and Inorganic Carbon Analysis (TOC and TIC) Polymer-Cements X-Ray Diffraction (XRD) Analysis1Licence not specifiedover 2 years ago
- This calculation engine estimates technoeconomic feasibility for transported geothermal energy projects. The TGE screening tool (geotool.exe) takes input from input file (input.txt), and list results into output file (output.txt). Both the input and ouput files are in the same folder as the geotool.exe. To use the tool, the input file containing adequate information of the case should be prepared in the format explained below, and the input file should be put into the same folder as geotool.exe. Then the geotool.exe can be executed, which will generate a output.txt file in the same folder containing all key calculation results. The format and content of the output file is explained below as well.1Licence not specifiedover 2 years ago
- This data set was used to calculate the technical potential and economic feasibility of transported geothermal energy, according to the methodology outlined in the final report included below.1Licence not specifiedover 2 years ago
- End of well report for the drilling of AK-3, the 3rd core hole in Hot Springs Bay Valley on Akutan Island. Project initiated and managed by the City of Akutan. Previous exploration and drilling of first 2 wells by Alaska Energy Authority, and this well partially funded by DOE. Drilled to 1955 ft in 2016.1Licence not specifiedover 2 years ago
- Tier 3 data for Appalachian Basin sectors of New York, Pennsylvania and West Virginia used in a Geothermal Play Fairway Analysis of opportunities for low-temperature direct-use applications of heat. It accompanies data and materials submitted as Geothermal Data Repository Submission "Natural Reservoir Analysis 2016 GPFA-AB" (linked below). Reservoir information are derived from oil and gas exploration and production data sets, or derived from those data based on further analysis. Data reported here encompass locations (horizontal and depth), geologic formation names, lithology, reservoir volume, porosity and permeability, and derived approximations of the quality of the reservoir. These differ from the linked 2015 data submission in that this file presents data for New York that are comparable to those in the other two states. In contrast, the 2015 data available measured differing attributes across the state boundaries.1Licence not specifiedover 2 years ago
- This submission contains information used to compute the combined risk factors for deep geothermal energy opportunities in the Appalachian Basin, in the context of a the Play Fairway Analysis project. The risk factors are sedimentary rock reservoir quality, thermal resource quality, potential for induced seismicity, and utilization for direct-use heating of neighborhoods. The methods used to combine the risk factors included taking the average, the geometric mean, and the minimum of the four risk factors. Combined risk maps are provided for three different sedimentary rock reservoir metrics. Combined risk maps are also provided for the three geologic risk factors alone (thermal, reservoir, and seismic), and for the three risk factors that exclude reservoir quality (utilization, seismicity, and thermal qualities). The 2015 data submission should be visited to obtain associated shapefiles, which include: 1) definition of the High and Medium priority play fairways (Inner_Fairway, and Outer_Fairway), 2) definition of the US Census Places (usCensusPlaces), 3) places (cities) of interest in the region (Places_of_Interest) identified as geothermal play fairways, 4) the point centers of the raster cells (Raster_Center_Locations), and 5) locations of industries and special-use communities (e.g., colleges and military bases) identified as low temperature heat users (Industries). The 2015 submission also includes: 1) a methodology memo that explains how the risk factors were combined (GPFA-AB_combining_risk_factors.pdf), 2) the earthquake-based seismic risk map, and 3) supporting information with details of the calculations or processing used in generating these data files. More details on each file are given in the spreadsheet "list_of_contents.xlsx" in the folder "Supporting_Information". Code used to calculate values is available at https://github.com/calvinwhealton/geothermal_pfa under the folder "combining_metrics". Note that the 2016 code is currently under the branch named "combining_metrics_2016" in the folder called "combining_metrics". This branch may be merged with the master branch in the future. Many files contained within this submission update and replace the indicated files contained in: Cornell University. (2015). Risk Factor Analysis in Low-Temperature Geothermal Play Fairway Analysis for the Appalachian Basin (GPFA-AB) [data set]. Retrieved from https://gdr.openei.org/submissions/622. doi:10.15121/12619421Licence not specifiedover 2 years ago
- *This submission revises the analysis and products for Thermal Quality Analysis for the northern half of the Appalachian Basin (https://gdr.openei.org/submissions/638)* This submission is one of five major parts of a Low Temperature Geothermal Play Fairway Analysis. Phase 1 of the project identified potential Geothermal Play Fairways within the Appalachian basin of Pennsylvania, West Virginia and New York. This submission includes a subset of the necessary shapefiles, rasters, datasets, code, and references to code repositories that were used to create the thermal resource and risk factor maps as part of the project. This subset is those contents that were improved upon during calendar year 2016. Figures are provided as examples of some shapefiles and rasters. See also: Final Report: Low Temperature Geothermal Play Fairway Analysis for the Appalachian Basin (https://gdr.openei.org/submissions/899). The 2015 data submission should be visited to obtain: 1) the regional standardized 1 square km grid used in the project as points (cell centers), polygons, and as a raster, 2) the raw well data for the state well temperature databases, 3) the COSUNA section shapefile and formation thermal conductivities by state as *.xlsx files, 4) the sediment thickness map and 30 m Digital Elevation Model for the Appalachian Basin as GeoTIFF raster files, 5) the BHT correction sections shapefile and drilling fluid databases as *.csv files, 6) the unbuffered interpolation regions as shapefiles, 7) several 50 km buffered interpolation regions as shapefiles, 8) several gridded interpolation regions as raster files, 9) an R script for organizing the thermal data and running the local spatial outlier analysis, 10) shapefiles and rasters for the prediction, uncertainty, and cross validation of the temperature at 1.5 km, 2.5 km, and 3.5 km depth, 11) shapefiles and rasters for the prediction, uncertainty, and cross validation depth to 100 degrees C, 12) an ArcGIS toolbox for thermal risk factor models, 13) an ArcGIS model for extracting results specific to each county of interest, 14) thermal resource cross section plots, 15) the geothermal Play Fairways.1Licence not specifiedover 2 years ago
- *This submission updates a 2015 submission for the utilization analysis (https://gdr.openei.org/submissions/623)* The files document the analysis of utilization potential in support of Phase 1 Low Temperature Geothermal Play Fairway Analysis for the Appalachian Basin. This 2016 submission includes data pertinent to the methods and results of an analysis of the Surface Levelized Cost of Heat (SLCOH) for US Census Bureau 'Places' within the study area. The SLCOHis was calculated using a modification of a program called GEOPHIRES, available at http://koenraadbeckers.net/geophires/index.php. In addition to calculating SLCOH, this task also identified many industrial sites that may be prospects for use of a geothermal district heating system, based on their size and industry, rather than on the SLCOH. An industry sorted listing and maps of the sites have been plotted as a layer onto different iterations of maps combining the three geologic risk factors (Thermal Quality, Natural Reservoir Quality, and Risk of Seismicity). In addition, a shapefile of the industrial sites is also included with 7 associated files. Supporting files are also supplied.1Licence not specifiedover 2 years ago
- CO2 breakthrough experiments in a column packed with sand and filled with StimuFrac fluid or water to learn about transport of the stimuli (CO2) on environments where either water or the stimuli-responsive polymer aqueous solution (StimuFrac) is present. Results suggest co-injection of StimuFrac and CO2 as the potentially best alternative to deploy this novel fracking fluid.1Licence not specifiedover 2 years ago
- Lab-scale stimulation was performed on Coso samples obtained from a single core (1623 feet TVD, reservoir Coso CGC 18-27) using StimuFrac and control fluid in the absence of stimuli-responsive polymer.1Licence not specifiedover 2 years ago
- The switchable polarity solvent forward osmosis (SPS FO) desalination process requires use of a polishing filtration step to remove trace quantities of draw solution from the product water stream. Selected nanofiltration (NF) and reverse osmosis (RO) membranes were tested for their ability to recover water from 1-cyclohexylpiperidenium bicarbonate solutions in this application. This submission includes the experimental data used to calculate NF and RO membrane flux-normalized net driving pressure (FNNDP) and flux-normalized rejection (FNR) performance in recovering water from 1-cyclohexylpiperidenium bicarbonate solutions. This data is further described and visualized in the manuscript entitled "Compatibility study of nanofiltration and reverse osmosis membranes with 1 cyclohexylpiperidenium bicarbonate solutions" (see attached Compatibility Study Manuscript).1Licence not specifiedover 2 years ago
- Integrated testing of nanofiltration and lithium uptake subsystems using synthetic geothermal brine. Also includes a financial summary (Pro Forma) of the proposed 'Geothermal Thermoelectric Generation (G-TEG) with Integrated Temperature Driven Membrane Distillation and Novel Manganese Oxide for Lithium Extraction' (first pass 500 gpm).1Licence not specifiedover 2 years ago
- Drilling results from the microhole project at the Sandia High Operating Temperature test facility. The project is seeking to help reduce the cost of exploration and monitoring of geothermal wells and formations by drilling smaller holes. The tests were part of a control algorithm development to optimize the weight-on-bit (WOB) used during drilling with a percussive hammer.1Licence not specifiedover 2 years ago
- Lab-scale stimulation work on non-porous fused silica (similar mechanical properties to igneous rock) was performed using pure water, pure CO2 and water/CO2 mixtures to compare back to back fracturing performance of these fluids with PNNL's StimuFrac.1Licence not specifiedover 2 years ago
- Compressibility values were obtained in a range of pressures at 250degC by employing a fixed volume view cell completely filled with PAA aqueous solution and injecting CO2 at constant flow rate (0.3mL/min). Pressure increase as a function of supercritical CO2 (scCO2) mass fraction in the mixture was monitored. The plot shows the apparent compressibility of Stimufrac as a function of scCO2 mass fraction obtained in a pressure range between 2100-7000 psi at 250degC. At small mass fractions of scCO2 the compressibility increases probably due to the dissolution/reaction of CO2 in aqueous PAA and reaches a maximum at mCO2/mH2O = 0.06. Then, compressibility decreases showing a linear relationship with scCO2 mass fraction due to the continuous increase in density of the binary fluid associated to the pressure increase.1Licence not specifiedover 2 years ago
- This data is a compilation of well observations from the Southern Methodist University (SMU) and Association of American State Geologists (AASG), location of identified low temperature geothermal systems from United States Geological Survey (USGS), and low temperature geothermal wells and springs from Oregon Institute of Technology Geo-Heat Center (OIT-GHC). The data is linked to NREL`s Geothermal Prospector online tool and shape files can be downloaded from the provided links. This study is also published at GRC Annual meeting on October 25th, 2016.1Licence not specifiedover 2 years ago
- List of Sentinel-1A InSAR images acquired between 2014-11-01 and 2016-10-31, and archived at the link below. NOTE: The user must create an account in order to access the data1Licence not specifiedover 2 years ago
- *These files add to and replace same-named files found within Submission 559 (hover over file display names to see actual file names in bottom-left corner of screen)* The files included in this submission contain all data pertinent to the methods and results of a cohesive multi-state analysis of all known potential geothermal reservoirs in sedimentary rocks in the Appalachian Basin region, ranked by their potential favorability. Favorability is quantified using three metrics: Reservoir Productivity Index for water; Reservoir Productivity Index; Reservoir Flow Capacity. The metrics are explained in the Reservoirs Methodology Memo (included in zip file). The product represents a minimum spatial extent of potential sedimentary rock geothermal reservoirs. Only natural porosity and permeability were analyzed. Shapefile and images of the spatial distributions of these reservoir quality metrics and of the uncertainty on these metrics are included as well. UPDATE: Accompanying geologic reservoirs data may be found at: https://gdr.openei.org/submissions/881 (linked below).1Licence not specifiedover 2 years ago
- Map of DAS, nodal, vibroseis and Reftek stations during March 2016 deployment. The plot on the left has nodal stations labeled; the plot on the right has vibroseis observations labeled. Stations are shown in map-view using Brady's rotated X-Y coordinates with side plots denoting elevation with respect to the WGS84 ellipsoid. Blue circles denote vibroseis data, x symbols denote DAS (cyan for horizontal and magenta for vertical), black asterisks denote Reftek data, and red plus signs denote nodal data. This map can be found on UW-Madison's askja server at /PoroTomo/DATA/MAPS/Deployment_Stations.pdf1Licence not specifiedover 2 years ago
- Links to URL's with latest time-series of GPS stations BRAD, BRDY and BRD1. Files with links to the URL's (i.e. ftp location) of the GPS RINEX files archived since last report.1Licence not specifiedover 2 years ago
- Core log from Glass Buttes Well 52-33, drilled by Geodrill Rig 6 in 2014 to a depth of 3000 feet. Logged at 500 ft intervals.1Licence not specifiedover 2 years ago
- PoroTomo March 2016 Updated vibroseis source locations with UTM locations. Supersedes gdr.openei.org/submissions/824. Updated vibroseis source location data for Stages 1-4, PoroTomo March 2016. This revision includes source point locations in UTM format (meters) for all four Stages of active source acquisition. Vibroseis sweep data were collected on a Signature Recorder unit (mfr Seismic Source) mounted in the vibroseis cab during the March 2016 PoroTomo active seismic survey Stages 1 to 4. Each sweep generated a GPS timed SEG-Y file with 4 input channels and a 20 second record length. Ch1 = pilot sweep, Ch2 = accelerometer output from the vibe's mass, Ch3 = accel output from the baseplase, and Ch4 = weighted sum of the accelerometer outputs. SEG-Y files are available via the links below. These data are available for download without login credentials through the free and publicly accessible Open Energy Data Initiative (OEDI) data viewer which allows users to browse and download individual or groups of files.1Licence not specifiedover 2 years ago
- List of triggered events recorded on LBNL's permanent EGS seismic array at Brady's geothermal field. This submission also includes links to the NCEDC EGS Earthquake Catalog Search page and to the metadata for the seismic array installed at Brady's Geothermal Field.1Licence not specifiedover 2 years ago
- This report covers data acquisition, instrumentation and processing of a gravity survey performed on the Glass Buttes Geothermal Exploration Project, located in Lake County, Oregon for ORMAT Technologies Inc. The survey was conducted during 21 June 2010 to 26 June 2010. The survey area is located in T23S, R21-23E and lies within the Glass Buttes, Hat Butte, and Potato Lake, Oregon 1:24,000 topographic sheets. A total of 180 gravity stations were acquired along five profile lines.1Licence not specifiedover 2 years ago
- This data set includes Light Detection and Ranging (LiDAR) data, a remote sensing processing report, and a geologic map of the Glass Buttes study area for ORMAT. The total area flown for the LiDAR remote sensing was 86,631 acres to fully encompass the area of interest (84,849 acres). The "LiDAR Remote Sensing Report" reflects statistics for the overall LiDAR survey. An airborne hyperspectral scanner imagery survey over an area in Glass Buttes, Oregon. The "HyMap Survey Processing Report" describes the processing that has been applied to the HyMap data to produce a number of image products including overview colour composites, decorrelation colour composites, minimum noise fraction (MNF) colour composites, and unmixed end-member mineral map. To produce these products the data first has various processes applied to it that converts the raw data into reflectance imagery which is then geometrically corrected and radiometrically leveled so that seamless image mosaics are produced. A detailed geologic map with cross sections of the Glass Buttes Volcanic Complex, Oregon is also included.1Licence not specifiedover 2 years ago
- Zonge Geosciences, Inc. performed a magnetotelluric (MT) survey for the Glass Buttes Project at the request of Ormat Technologies Inc. during the period of 7 October 2010 to 8 November 2010. This report provides the deep electromagnetic data and methods that were used to assist Ormat Technologies in assessing potential geothermal resources in the area. Tensor magnetotelluric data were acquired at 30 stations in the eastern survey area and array MT data were acquired along one line, 6.8 kilometers in length in the western survey area. The survey area is located in Lake County, Oregon and lies within the Glass Butte and Hat Butte, Oregon topographic areas.1Licence not specifiedover 2 years ago
- Using an ultra-light aircraft, a high-resolution aeromagnetic survey was carried out over Ormat Nevada's Glass Buttes project area in Oregon. Survey operations were completed on May 25, 2010. Average terrain clearance was 223 meters from the sensor. A total of 1,352 line-miles of aeromagnetic data were acquired. Processed survey data includes a total magnetic intensity map, reduced to pole (TMI) map, horizontal gradient (RTP) map, tilt derivative (RTP) map, and a horizontal gradient map of the tilt derivative grid.1Licence not specifiedover 2 years ago
- In these data sets, the experiment time, actual date and time, room temperature, sample temperature, upstream and downstream pressures (measured independently), corrected differential pressure (measured independently and corrected for offset and room temperature) indication of aperture closure by linear variable differential transformer are presented. An indication of the sample is in the file name and in the first line of data.1Licence not specifiedover 2 years ago
- The submitted data correspond to the complete raw temperature datasets captured by the distributed temperature sensing (DTS) horizontal and vertical arrays during the PoroTomo Experiment. Files in each submitted resource include: .xml (level 0): Data that includes Stokes, Anti-Stokes, and Temperature data .csv (level 1): Data that includes temperature PT100: Reference probe data1Licence not specifiedover 2 years ago
- P and S-wave datasets and associated report studying the ability to use three-component long offset surface seismic surveys to find large aperture fractures in geothermal resources at the San Emidio geothermal resource area in Washoe County, Nevada.1Licence not specifiedover 2 years ago
- This data is in sac format and includes recordings of two active source events from 238 three-component nodal seismometers deployed at Bradys Hot Springs geothermal field as part of the PoroTomo project. The source was a viberoseis truck operating in P-wave vibrational mode and generating a swept-frequency signal. The files are 33 seconds long starting 4 seconds before each sweep was initiated. There is some overlap in the file times.1Licence not specifiedover 2 years ago
- The work evaluates, develops and demonstrates flexible, scalable mineral extraction technology for geothermal brines based upon solid phase sorbent materials with a specific focus upon rare earth elements (REEs). The selected organic and inorganic sorbent materials (silica and MOF) demonstrated high performance for collection of trace REEs, precious and valuable metals beyond commercially available sorbents. This report details the silica and MOF sorbent uptake, percent removal, and distribution coefficient results for Nd, Eu, Dy, Y and Ce, as well as the characterization of these select sorbent materials. The report also contains estimated costs from an in-depth technoeconomic analysis of a scaled up separation process. The estimated financial payback period for installing this equipment varies between 3.3 to 5.7 years depending on the brine flow rate of the geothermal resource.1Licence not specifiedover 2 years ago
- The submitted data correspond to the monitored vibrations caused by a vibroseis seismically exciting the ground in the vertical direction and captured by the DAS horizontal and vertical arrays during the PoroTomo Experiment. The data also include a file with the acceleration record at the Vibroseis. Vibroseis Sweep Details: Sweep on location T84 Stage 4 (Mode P 60 s long record ) Time: 2016-03-25 14:01:15 (UTC) Location: 39.80476089N, -119.0027625W Elevation: 1272.0M (on ground surface at the site) Sweep length: 20 seconds Frequencies: 5 Hz to 20 Hz1Licence not specifiedover 2 years ago
- The submitted data correspond to the vibration caused by a 3.4 M earthquake and captured by the DAS horizontal and vertical arrays during the PoroTomo Experiment. Earthquake information : M 4.3 - 23km ESE of Hawthorne, Nevada Time: 2016-03-21 07:37:10 (UTC) Location: 38.479 N 118.366 W Depth: 9.9 km1Licence not specifiedover 2 years ago
- Continuous seismic recordings from six Reftek seismometers deployed at Bradys Hot Springs geothermal field in Nevada from March 9th to 30th, 2016. Data is archived in mseed format. Five of the six stations are under a moratorium.1Licence not specifiedover 2 years ago
- 90-second records of data from 238 three-component nodal seismometer deployed at Bradys geothermal field. The time window catches an earthquake arrival. Earthquake data from USGS online catalog: Magnitude: 4.3 ml +/- 0.4 Location: 38.479 deg N 118.366 deg W +/- 0.7 km Depth: 9.9 km +/- 0.7 Date and Time: 2016-03-21 07:37:10.535 UTC1Licence not specifiedover 2 years ago
- Contains pumping data associated with the wells used in the 2016 Spring Campaign led partially by UW - Madison, LBNL, and LLNL scientists. The well coordinates and the depths to the pressure sensors used in the pumping wells can be found at the link "Coordinates and Sensor Depths" below.1Licence not specifiedover 2 years ago
- This .csv files contain the raw water pressure data from three observation wells during pumping tests performed in the Spring of 2016. Included is a "read me" file explaining the details of where and how the data were collected.1Licence not specifiedover 2 years ago
- Geothermometry Mapping of Deep Hydrothermal Reservoirs in Southeastern Idaho. Project final report with detail appendices.1Licence not specifiedover 2 years ago
- Compilation of data (spreadsheet and shapefiles) for several low-temperature resource types, including isolated springs and wells, delineated area convection systems, sedimentary basins and coastal plains sedimentary systems. For each system, we include estimates of the accessible resource base, mean extractable resource and beneficial heat. Data compiled from USGS and other sources. General locations are provided in the spreadsheet; specific locations are provided in the associated shapefiles. The paper (submitted to GRC 2016) describing the methodology and analysis is also included.1Licence not specifiedover 2 years ago
- This data includes the locations of the MT data collected in and around the Coso Geothermal field that covered the West Flank area. These are the data that the 3D MT models were created from that were discussed in Phase 1 of the West Flank FORGE project. The projected coordinate system is NAD 1927 State Plane California IV FIPS 0404 and the Projection is Lambert Conformal Conic. Units are in feet.1Licence not specifiedover 2 years ago
- List of synthetic aperture radar (SAR) images acquired by TerraSAR-X and TanDEM-X satellite missions and archived at UNAVCO's WINSAR facility. See file "Bradys TSX Holdings.csv" for individual links. NOTE: The user must create an account in order to access the data (See "Instructions for Creating an Account" below).1Licence not specifiedover 2 years ago
- This folder contains X-ray CT images and an explanation related to the shear induced permeability testing of Stripa granite1Licence not specifiedover 2 years ago
- Spreadsheet containing the raw measured data, calibrated data, and brief explanation of data for Test1 Stripa Granite Geomechanical/Geochemical Test. Stress on fracture ~20.7 MPa.1Licence not specifiedover 2 years ago
- This archived dataset contains magnetic and gravity imaging data for the Appalachian Basin, compiled using Poisson Wavelet Multiscale Edge Detection, referred to as 'worm' for brevity, and stored in a PostGIS database, along with shapefiles and CSVs of relevant data. The archive also includes regional earthquake data going back to 1973 and relevant world stress map data. These data are used in estimating the seismic hazards (both natural and induced) for candidate direct use geothermal locations in the Appalachian Basin Play Fairway Analysis by Jordan et al. (2015).1Licence not specifiedover 2 years ago
- Fourteen seismic reflection profiles and their interpretations for the southern Carson Sink within and proximal to the proposed Fallon FORGE site. Five profiles were provided by the Navy Geothermal Program Office and reprocessed by Optim Inc. Nine proflies were acquired from the Seismic Exchange Inc and have been interpreted by UNR.1Licence not specifiedover 2 years ago
- This is the 3D version of the MT data for the West Flank Coso FORGE area. The Coso geothermal field has had three Magnetotelluric (MT) datasets collected including surveys in 2003, 2006, and 2011. The final collection, in 2011, expanded the survey to the west and covers the West Flank of FORGE area.This most recent data set was collected by Schlumberger/WesternGeco and inverted by the WesternGeco GeoSolutions Integrated EM Center of Excellence in Milan, Italy; the 2003 and 2006 data were integrated for these inversions in the present study.1Licence not specifiedover 2 years ago
- Downhole temperature data for the three wells inside the West Flank FORGE footprint; 83-11, TCH 74-2 and TCH 48-11. TCH 74-2 and TCH 48-11 were both collected before 1990 and 83-11 was collected in 2009. The are compiled into one spreadsheet for ease of visualization. Plot of data included.1Licence not specifiedover 2 years ago
- Amplitude images (both vertical and depth slices) extracted from 3D seismic reflection survey over area of Walker Ranch area (adjacent to Raft River). Crossline spacing of 660 feet and inline of 165 feet using a Vibroseis source. Processing included depth migration. Micro-earthquake hypocenters on images. Stratigraphic information and nearby well tracks added to images. Images are embedded in a Microsoft Word document with additional information. Exact location and depth restricted for proprietary reasons. Data collection and processing funded by Agua Caliente. Original data remains property of Agua Caliente.1Licence not specifiedover 2 years ago
- Shapefile of shallow, low-temperature EGS resources for the United States, and accompanying paper (submitted to GRC 2016) describing the methodology and analysis. These data are part of a very rough estimate created for use in the U.S. Department of Energy Geothermal Technology Office's Vision Study. They are not a robust estimate of low-temperature EGS resources in the U.S, and should be used accordingly.1Licence not specifiedover 2 years ago
- This data provides the underlying project-level analysis and data sources complied in response to the DOE request to determine the amount of geothermal capacity that could be available to meet the President's request to double renewable energy capacity by 2020. The enclosed data contains compiled data on individual project names and locations (by geothermal area and region), ownership, estimated nameplate capacity, and project status, and also contains inferred data on the barriers and viability of the project to meet a 2020 development timeline. The analysis of this data is discussed in the attached NREL report.1Licence not specifiedover 2 years ago
- Compilation of data (spreadsheet and shapefiles) for several low-temperature resource types, including isolated springs and wells, delineated area convection systems, sedimentary basins and coastal plains sedimentary systems. For each system, we include estimates of the accessible resource base, mean extractable resource and beneficial heat. Data compiled from USGS and other sources. The paper (submitted to GRC 2016) describing the methodology and analysis is also included. * A newer version of this data exists in a more recent submission. See the resources below for more information.1Licence not specifiedover 2 years ago
- This metadata submission includes the coordinates of the DAS and DTS surface and borehole arrays, the list of file names, and the list of recorded files during testing at the PoroTomo Natural Laboratory at Brady Hot Spring in Nevada. Testing was completed during March 2016.1Licence not specifiedover 2 years ago
- Contains metadata associated with the wells used in the 2016 Spring Campaign led partially by UW - Madison, LBNL, and LLNL scientists. Included with the well coordinates are the depths to the pressure sensors used in observation and pumping wells. Read me files are included for each .csv file.1Licence not specifiedover 2 years ago
- Metadata for the Reftek seismometer array deployed at the POROTOMO's Natural Laboratory in Brady Hot Spring, Nevada during the March 2016 testing.1Licence not specifiedover 2 years ago
- Metadata for the nodal seismometer array deployed at the POROTOMO's Natural Laboratory in Brady Hot Spring, Nevada during the March 2016 testing. Metadata includes location and timing for each instrument as well as file lists of data to be uploaded in a separate submission.1Licence not specifiedover 2 years ago
- Metadata for DTS and DAS datasets for both borehole 56-1 and trenched cables.1Licence not specifiedover 2 years ago
- Sweep parameters, source locations and trigger timing for the four Phases of active source seismic data acquisition.1Licence not specifiedover 2 years ago
- This dataset includes heat demand for potential application of direct use geothermal broken down into 4 sectors: agricultural, commercial, manufacturing and residential. The data for each sector are organized by county, were disaggregated specifically to assess the market demand for geothermal direct use, and were derived using methodologies customized for each sector based on the availability of data and other sector-specific factors. This dataset also includes a paper containing a full explanation of the methodologies used.1Licence not specifiedover 2 years ago
- The data is associated to the Fallon FORGE project and includes LiDAR from the Navy GPO. Also included are geologic maps from the USGS and Nevada Bureau of Mines and Geology for the Fallon, NV area.1Licence not specifiedover 2 years ago
- A study exploring sorption and stripping characteristics of sorption media when simulated geothermal brines are degassed or not degassed. Experiments were done at 70degC. The brines used in this study were formulated by Tusaar. The two brines used/simulated are labeled 1M and 1CF. The data consists of a Word file explaining the results and an Excel file of the data.1Licence not specifiedover 2 years ago
- A study comparing the REE sorption characteristics of fresh ligand-based sorption media and media partially loaded with REEs when exposed to a simulated geothermal brine with known mineral concentrations, REE7. Sorption rates were tested using microcosm shaker tests. Results suggest that preferential REE sorption is greater for fresh media, but this preference differs between elements.1Licence not specifiedover 2 years ago
- Experimental results from several studies exploring the impact of pH and acid volume on the stripping of rare earth elements (REEs) loaded onto ligand-based media via an active column. The REEs in this experiment were loaded onto the media through exposure to a simulated geothermal brine with known mineral concentrations. The data include the experiment results, rare earth element concentrations, and the experimental parameters varied.1Licence not specifiedover 2 years ago
- Description of experimental protocol used to characterize the effectiveness of regenerating ligand-based adsorption media through the addition of ligands when media were previously depleted of ligands during use. Results of the effectiveness of this regeneration are also described.1Licence not specifiedover 2 years ago
- Description of a conceptual commercial process to remove rare earth elements (REEs) from geothermal brine, based on a small-scale laboratory experiment to load, strip, and regenerate a ligand-based media used to adsorb REEs from a simulated brine doped with known mineral concentrations.1Licence not specifiedover 2 years ago
- This document describes the method and results of an in-situ experiment used to confirm that ligand bleed from a sorptive media can be contained. The experiment focused on maintaining the media's sorption of rare earth elements (REE) obtained from a simulated geothermal brine doped with known mineral concentrations.1Licence not specifiedover 2 years ago
- Shaker test data comparing rare earth element (REE) sorption onto Tusaar media between one natural geothermal brine and two simulated brines doped with known mineral concentrations.1Licence not specifiedover 2 years ago
- The data is associated to the Fallon FORGE project and includes mudlogs for all wells used to characterize the subsurface, as wells as gravity, magnetotelluric, earthquake seismicity, and temperature data from the Navy GPO and Ormat. Also included are geologic maps from the USGS and Nevada Bureau of Mines and Geology for the Fallon, NV area.1Licence not specifiedover 2 years ago
- Gravity and aeromagnetic data for West Flank FORGE site.1Licence not specifiedover 2 years ago
- Natural fracture data from wells 33-7, 33A-7,52A-7, 52B-7 and 83-11 at West Flank. Fracture orientations were determined from image logs of these wells (see accompanying submissions). Data files contain depth, apparent (in wellbore reference frame) and true (in geographic reference frame) azimuth and dip, respectively.1Licence not specifiedover 2 years ago
- PDFs of seismic reflection profiles 101,110, 111 local to the West Flank FORGE site. 45 line kilometers of seismic reflection data are processed data collected in 2001 through the use of vibroseis trucks. The initial analysis and interpretation of these data was performed by Unruh et al. (2001). Optim processed these data by inverting the P-wave first arrivals to create a 2-D velocity structure. Kirchhoff images were then created for each line using velocity tomograms (Unruh et al., 2001).1Licence not specifiedover 2 years ago
- XRD and Petrographic Study for wells 83-11 33A-7 and 33A-7RD-1 West Flank FORGE. Work and report completed by Clay Jones and Joseph Moore at the Energy and Geoscience Institute (EGI) in 2011.1Licence not specifiedover 2 years ago
- The Coso Magnetotelluric (MT) dataset of which the West Flank FORGE MT data is a subset, was collected by Schlumberger / WesternGeco and initially processed by the WesternGeco GeoSolutions Integrated EM Center of Excellence in Milan, Italy. The 2011 data was based on 99 soundings that were centered on the West Flank geothermal prospect. The new soundings along with previous data from 2003 and 2006 were incorporated into a 3D inversion. Full impedance tensor data were inverted in the 1-3000 Hz range. The modelling report notes several noise sources, specifically the DC powerline that is 20,000 feet west of the survey area, and may have affected data in the 0.02 to 10 Hz range. Model cell dimensions of 450 x 450 x 65 feet were used to avoid computational instability in the 3D model. The fit between calculated and observed MT values for the final model run had an RMS value of 1.807. The included figure from the WesternGeco report shows the sounding locations from the 2011, 2006 and 2003 surveys.1Licence not specifiedover 2 years ago
- Mud logs for wells 83-11, 68-6, 33A-7, 33A-7RD, 52B-7, and 88-1 at West Flank1Licence not specifiedover 2 years ago
- Temperature logs, pressure logs, directional survey, well history, well bore schematic, and other reports for well 48-11TCH at West Flank FORGE1Licence not specifiedover 2 years ago
- Temperature logs, pressure logs, directional survey, well history, well bore schematic, and other reports for well 74-2TCH at West Flank FORGE1Licence not specifiedover 2 years ago
- The data include compressive strength and Young's Modulus recoveries in steam and carbonate environments at 270 deg C for four chemically different cement composites after imposed controlled damaged.1Licence not specifiedover 2 years ago
- Results for fluid rare earth element analyses from four Reykjanes peninsula high-temperature geothermal fields. Data for fluids from hydrothermal vents located 2400 m below sea level from Middle Valley on the Juan de Fuca Ridge are also included. Data have been corrected for flashing. Samples preconcentrated using a chelating resin with IDA functional group (InertSep ME-1). Analyzed using an Element magnetic sector inductively coupled plasma mass spectrometry (ICP-MS).1Licence not specifiedover 2 years ago
- Analytical results for X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) measurement of major, trace and rare earth elements in drill core from geothermal wells in Reykjanes, Iceland. Total Fe was analyzed as FeO, therefore is not included under the Fe2O3 column.1Licence not specifiedover 2 years ago
- Analytical results for x-ray fluorescence (XRF) and Inductively Couple Plasma Mass Spectrometry (ICP-MS) measurement of major, trace and rare earth elements in drill cuttings from geothermal wells in Reykjanes, Iceland. Total Fe was analyzed as FeO, therefore is not included under the Fe2O3 column.1Licence not specifiedover 2 years ago
- Brady's Field PoroTomo project. GPS station deployment and data analysis. Links to data files and website with station and time-series information1Licence not specifiedover 2 years ago
- This submission contains a link to the EDX Collaborative Workspace where the MT data collected in support of the DOE GTO 4D EGS monitoring project is stored. Daily production reports-- Oregon State University (OSU) had 6 stations running continuously. --Dynamic survey map, KML file with MT locations on the west flank. Read off at location, created excel file for locations of each NBL. Zonge has two N-S lines of MT stations, 1-x and 2-x. Created excel file for locations of each 1-x and 2-x. --In stations, each station has day file with calibration of magnetometers, 6 channels. .Z3d are proprietary data files (refer to Zonge Int'l) --MT Section: has four channels that went into it, in edi format are given frequenices, coordinate system. Tensor-- four elements of this tensor at each frequency. The tensor is complex-valued-- it has a real part and an imaginary part at each frequency. In .zxr the impedance sensor relates N-S to E-W. "r" is imaginary. "ZXYVAR" is variance, error on each impedance tensor. Transmuted into apparent resistivity "ro". phase.1Licence not specifiedover 2 years ago
- Datasets and information used to characterize the subsurface of Newberry and support modeling efforts. Includes sources for well logs, earthquakes, maps & cross-sections, and LiDAR/DEM1Licence not specifiedover 2 years ago
- Research references to literature about the Newberry geothermal area, Oregon.1Licence not specifiedover 2 years ago
- Newberry Volcano, a voluminous (500 km3) basaltic/andesitic/rhyolitic shield volcano located near the intersection of the Cascade volcanic arc, the Oregon High Lava Plains and Brothers Fault Zone, and the northern Basin and Range Province, has been the site of geothermal exploration for more than 40 years. This has resulted in a unique resource: an extensive set of surficial and subsurface information appropriate to constrain the baseline structure of, and conditions within a high heat capacity magmatically hosted geothermal system. In 2012 and 2014 AltaRock Energy conducted repeated stimulation of an enhanced geothermal systems (EGS) prospect along the western flank of the Newberry Volcano. A surface based monitoring effort was conducted independent of these stimulation attempts in both 2012 and 2014 through a collaboration between NETL, Oregon State University and Zonge International. This program included utilization of 3-D and 4-D magnetotelluric, InSAR, ground-based interferometric radar, and microgravity observations within and surrounding the planned EGS stimulation zone. These observations as well as borehole and microseismic stress field and location solutions provided by AltaRock and its collaborators, in combination with well logs, petrologic and geochemical data sets, LIDAR mapping of fault traces and extrusive volcanics, surficial geologic mapping and seismic tomography, have resulted in development of a framework, subsurface geologic model for Newberry Volcano. The Newberry subsurface geologic model is a three-dimensional digital model constructed in EarthVision that enables lithology, directly and remotely measured material properties, and derived properties such as permeability, porosity and temperature, to be coregistered. This provides a powerful tool for characterizing and evaluating the sustainability of the site for EGS production and testing, particularly within the data-dense western portion of the volcano. The model has implications for understanding the previous EGS stimulations at Newberry as well as supporting future research and resource characterization opportunities. A portion of the Newberry area has been selected as a candidate site for the DOE FORGE (Frontier Observatory for Research in Geothermal Energy) Program through a collaboration between Pacific Northwest National Laboratory, Oregon State University, AltaRock Energy and additional partners. Thus, the conceptual geologic model presented here will support and benefit from future enhancements associated with that effort. --Mark-Moser et al. 20161Licence not specifiedover 2 years ago
- This is a .kml earthquake animation covering the period of 1991 - 2011 for the Utah Milford FORGE site. It displays seismic events using different sized bubbles according to magnitude. It covers the general Utah FORGE area (large shaded rectangle) with the final site displayed as a smaller polygon along the northwestern margin. Earthquakes are subdivided into clusters and the time, date, and magnitude of each event is included. Nearby seismic stations are symbolized with triangles. This was created by the University of Utah Seismograph Stations (UUSS).1Licence not specifiedover 2 years ago
- An estimate of the total magnitude of crustal strain in Nevada (2nd invariant of the strain rate), independent of fault orientation. Crustal strain based on GPS station measurements. Nevada Bureau of Mines and Geology.1Licence not specifiedover 2 years ago
- The site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. This collection includes data on seismic events, groundwater, geomechanical models, gravity surveys, magnetics, resistivity, magnetotellurics (MT), rock physics, stress, the geologic setting, and supporting documentation, including several papers. Also included are 3D models (Petrel and Jewelsuite) of the proposed site. Data for wells INEL-1, WO-2, and USGS-142 have been included as links to separate data collections. These data have been assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL). Other contributors include the National Renewable Energy Laboratory (NREL), Lawrence Livermore National Laboratory (LLNL), the Center for Advanced Energy Studies (CEAS), the University of Idaho, Idaho State University, Boise State University, University of Wyoming, University of Oklahoma, Energy and Geoscience Institute-University of Utah, US Geothermal, Baker Hughes Campbell Scientific Inc., Chena Power, US Geological Survey (USGS), Idaho Department of Water Resources, Idaho Geological Survey, and Mink GeoHydro.1Licence not specifiedover 2 years ago
- Well data for the INEL-1 well located in eastern Snake River Plain, Idaho. This data collection includes caliper logs, lithology reports, borehole logs, temperature at depth data, neutron density and gamma data, full color logs, fracture analysis, photos, and rock strength parameters for the INEL-1 well. This collection of data has been assembled as part of the site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. They were assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL).1Licence not specifiedover 2 years ago
- Well data for the WO-2 well located in eastern Snake River Plain, Idaho. This data collection includes lithology reports, borehole logs, temperature at depth data, neutron density and gamma data, and rock strength parameters for the WO-2 well. This collection of data has been assembled as part of the site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. They were assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL).1Licence not specifiedover 2 years ago
- Well data for the USGS-142 well located in eastern Snake River Plain, Idaho. This data collection includes lithology reports, borehole logs, and photos of rhyolite core samples. This collection of data has been assembled as part of the site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. They were assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL).1Licence not specifiedover 2 years ago
- Geologic cross sections from the West Flank FORGE site. Cross Section traces linked in resources.1Licence not specifiedover 2 years ago
- Archive of ArcGIS data from the West Flank FORGE site located in Coso, California. Archive contains the following eight shapefiles: Polygon of the 3D geologic model (WestFlank3DGeologicModelExtent) Polylines of the traces 3D modeled faults (WestFlank3DModeledFaultTraces) Polylines of the fault traces from Duffield and Bacon, 1980 (WestFlankFaultsfromDuffieldandBacon) Polygon of the West Flank FORGE site (WestFlankFORGEsite) Polylines of the traces of the geologic cross-sections (cross-sections in a separate archive in the GDR) (WestFlankGeologicCrossSections) Polylines of the traces of the seismic reflection profiles through and adjacent to the West Flank site (seismic reflection profiles in a separate archive in the GDR) (WestFlankSiesmicReflectionProfiles) Points of the well collars in and around the West Flank site (WestFlankWellCollars) Polylines of the surface expression of the West Flank well paths (WestFlankWellPaths)1Licence not specifiedover 2 years ago
- x,y,z data of the 3D temperature model for the West Flank Coso FORGE site. Model grid spacing is 250m. The temperature model for the Coso geothermal field used over 100 geothermal production sized wells and intermediate-depth temperature holes. At the near surface of this model, two boundary temperatures were assumed: (1) areas with surface manifestations, including fumaroles along the northeast striking normal faults and northwest striking dextral faults with the hydrothermal field, a temperature of ~104 deg C was applied to datum at +1066 meters above sea level elevation, and (2) a near-surface temperature at about 10 meters depth, of 20 deg C was applied below the diurnal and annual conductive temperature perturbations. These assumptions were based on heat flow studies conducted at the CVF and for the Mojave Desert. On the edges of the hydrothermal system, a 73 deg C/km temperature gradient contour was established using conductive gradient data from shallow and intermediate-depth temperature holes. This contour was continued to all elevation datums between the 20 deg C surface and -1520 meters below mean sea level. Because the West Flank is outside of the geothermal field footprint, during Phase 1, the three wells inside the FORGE site were incorporated into the preexisting temperature model. To ensure a complete model was built based on all the available data sets, measured bottom-hole temperature gradients in certain wells were downward extrapolated to the next deepest elevation datum (or a maximum of about 25% of the well depth where conductive gradients are evident in the lower portions of the wells). After assuring that the margins of the geothermal field were going to be adequately modelled, the data was contoured using the Kriging method algorithm. Although the extrapolated temperatures and boundary conditions are not rigorous, the calculated temperatures are anticipated to be within ~6 deg C (20 deg F), or one contour interval, of the observed data within the Coso geothermal field. Based on a lack of temperature data west of 74-2TCH, the edges of this model still seem to have an effect on West Flank modeled temperatures.1Licence not specifiedover 2 years ago
- x,y,z downhole lithologic logs for the wells in and around the West Flank FORGE site based on a review of cuttings, core, and mud logs.1Licence not specifiedover 2 years ago
- This is an x,y,z file of the West Flank FORGE 3D geologic model. Model created in Earthvision by Dynamic Graphic Inc. The model was constructed with a grid spacing of 100 m. Geologic surfaces were extrapolated from the input data using a minimum tension gridding algorithm. The data file is tabular data in a text file, with lithology data associated with X,Y,Z grid points. All the relevant information is in the file header (the spatial reference, the projection etc.) In addition all the fields in the data file are identified in the header.1Licence not specifiedover 2 years ago
- A zip file containing two ArcGIS polygons of the FORGE site located in Fallon, Nevada. FallonFORGE3DGeologicModelRange is the 3D geologic model range and FallonFORGESite is the FORGE site location.1Licence not specifiedover 2 years ago
- x,y,z downhole temperature data for wells in and around the Fallon FORGE site. Data for the following wells are included: 82-36, 82-19, 84.31, 61-36, 88-24, FOH-3D, FDU-1, and FDU-2. Data are formatted in txt format and in columns for importing into Earthvision Software. Column headers and coordinate system information is stored in the file header.1Licence not specifiedover 2 years ago
- x,y,z text file of the downhole lithologic interpretations in the wells in and around the Fallon FORGE site. All the relevant information is in the file header (the spatial reference, the projection etc.) In addition all the fields in the data file are identified in the header.1Licence not specifiedover 2 years ago
- An x,y,z scattered data file for the 3D geologic model of the Fallon FORGE site. Model created in Earthvision by Dynamic Graphic Inc. The model was constructed with a grid spacing of 100 m. Geologic surfaces were extrapolated from the input data using a minimum tension gridding algorithm. The data file is tabular data in a text file, with lithology data associated with X,Y,Z grid points. All the relevant information is in the file header (the spatial reference, the projection etc.) In addition all the fields in the data file are identified in the header.1Licence not specifiedover 2 years ago
- The proposed Newberry Volcano FORGE site is in central Oregon on the northwest flank of the largest volcano in the Cascades volcanic arc. Beneath Newberry Volcano is one of the largest geothermal heat reservoirs in the western United States, extensively studied for the last 40 years. The large, shallow (200 deg C at less than 2 km depth), conductive thermal anomaly has already been well characterized by extensive drilling and geophysical surveys. Four deep (greater than 3,000 m) boreholes completed on the leasehold currently managed by AltaRock have conductive thermal gradients with bottom hole temperatures above 320 deg C. Three large geothermal pads and two deep geothermal wells exist on the leasehold as well as eight, 200-290 m deep monitoring boreholes that have been used for seismic monitoring and sampling of shallow groundwater. All these investments have built the scientific foundation that establishes the site as high EGS potential, demonstrates a record of addressing potential risks (induced seismicity, wildlife, groundwater, etc.), and has developed true support and engagement with the local and regional communities. The high temperatures at relatively shallow depths at the site will allow a greater variety of drilling methods to be tested and a greater share of funds to be reserved for non-drilling activities.1Licence not specifiedover 2 years ago
- Newberry Volcano in Central Oregon is the site of a Department of Energy funded Enhanced Geothermal System (EGS) Demonstration Project. Stimulation and production of an EGS is a strong perturbation to the physical and chemical environment, giving rise to coupled Thermal-Hydrological-Mechanical-Chemical (THMC) processes leading to permeability changes as a result of mineral dissolution and precipitation, rock deformation, and fracture reactivation. To evaluate these processes, and to help guide EGS stimulation and reservoir development strategies, a combined native-state and reservoir model of the west flank of Newberry Volcano was created that encompasses the planned stimulation zone and a several km region of the west flank from the surface down to the supercritical region, likely close to a postulated cooling intrusive body. Temperature and pressure distributions were first modeled using TOUGHREACT with boundary conditions estimated from nearby drill holes, and compared to measurements made in the over 3 km deep NWG 55-29 drill hole. With estimates of the porosity and heat capacities for the major hydrogeologic units, thermal conductivities were calibrated by matching to the measured temperature profile. To simulate the development of the observed hydrothermal mineralogy, a reaction-transport model (THC) was developed using the pre-alteration mineralogy and shallow groundwater chemistry as the initial geochemical conditions, assuming that modeled temperature and pressure distributions were relatively constant over several thousand years. Close correspondence of modeled and observed epidote distributions support the observation that past hydrothermal activity took place under thermal gradients similar to current values, whereas calcite and sulfide abundances at depth likely require a magmatic gas component. Multicomponent geothermometry was used to estimate potential temperatures of equilibration of waters, and to evaluate the effects of kinetics on calculated mineral equilibration temperatures. The ultimate goal will be to capture both the local chemical and mechanical changes in the rock owing to stimulation as well as the potential long-term response and sustainability of the larger-scale geothermal reservoir.1Licence not specifiedover 2 years ago
- Pressure data recorded using PANEX pressure gauges at the bottom of wells CFU31-F2 and CFU31-F3.1Licence not specifiedover 2 years ago
- Pressure data acquired in well F2 and F3 during the CO2 geothermal thermosiphoning test, Cranfield MS.1Licence not specifiedover 2 years ago
- Thermal profile data acquired using Silixa Ultima Distributed Temperature Sensor (DTS) at Cranfield, MS field test1Licence not specifiedover 2 years ago
- The Newberry Volcano EGS Demonstration in central Oregon, a 5 year project begun in 2010, tests recent technological advances designed to reduce the cost of power generated by EGS in a hot, dry well (NWG 55-29) drilled in 2008. First, the stimulation pumps used were designed to run for weeks and deliver large volumes of water at moderate well-head pressure. Second, to stimulate multiple zones, AltaRock developed thermo-degradable zonal isolation materials (TZIMs) to seal off fractures in a geothermal well to stimulate secondary and tertiary fracture zones. The TZIMs degrade within weeks, resulting in an optimized injection/ production profile of the entire well. Third, the project followed a project-specific Induced Seismicity Mitigation Plan (ISMP) to evaluate, monitor for, and mitigate felt induced seismicity. An initial stimulation was conducted in 2012 and continued for 7 weeks, with over 41,000 m3 of water injected. Further analysis indicated a shallow casing leak and an unstable formation in the open hole. The well was repaired with a shallow casing tieback and perforated liner in the open hole and re-stimulated in 2014. The second stimulation started September 23rd, 2014 and continued for 3 weeks with over 9,500 m3 of water injected. The well was treated with several batches of newly tested TZIM diverter materials and a newly designed Diverter Injection Vessel Assembly (DIVA), which was the main modification to the original injection system design used in 2012. A second round of stimulation that included two perforation shots and additional batches of TZIM was conducted on November 11th, 2014 for 9 days with an additional 4,000 m3 of water injected. The stimulations resulted in a 3-4 fold increase in injectivity, and PTS data indicates partial blocking and creation of flow zones near the bottom of the well.1Licence not specifiedover 2 years ago
- The Newberry Volcano EGS Demonstration in central Oregon, a 3 year project started in 2010, tests recent technological advances designed to reduce the cost of power generated by EGS in a hot, dry well (NWG 55-29) drilled in 2008. First, the stimulation pumps used were designed to run for weeks and deliver large volumes of water at moderate well-head pressure. Second, to stimulate multiple zones, AltaRock developed thermo-degradable zonal isolation materials (TZIMs) to seal off fractures in a geothermal well to stimulate secondary and tertiary fracture zones. The TZIMs degrade within weeks, resulting in an optimized injection/ production profile of the entire well. Third, the project followed a project-specific Induced Seismicity Mitigation Plan (ISMP) to evaluate, monitor for, and mitigate felt induced seismicity. Stimulation started October 17, 2012 and continued for 7 weeks, with over 41,000 m3 of water injected. Two TZIM treatments successfully shifted the depth of stimulation. Injectivity, DTS, and seismic analysis indicate that fracture permeability in well NWG 55-29 was enhanced by two orders of magnitude.1Licence not specifiedover 2 years ago
- Newberry combined gravity from Zonge Int'l, processed for the EGS stimulation project at well 55-29. Includes data from both Davenport 2006 collection and for OSU/4D EGS monitoring 2012 collection. - Locations are NAD83, UTM Zone 10 North, meters. Elevation is NAVD88. - Gravity in milligals. Free air and observed gravity are included, along with simple Bouguer anomaly and terrain corrected Bouguer anomaly. - SBA230 means simple Bouguer anomaly computed at 2.30 g/cc. - CBA230 means terrain corrected Bouguer anomaly at 2.30 g/cc. - This suite of densities are included (g/cc): 2.00, 2.10, 2.20, 2.30, 2.40, 2.50, 2.67.1Licence not specifiedover 2 years ago
- A refined earthquake mechanism catalog for southern Califiornia using the HASH method and locations derived from waveform cross-correlation. Each focal mechanism is obtained from grid searching for the best-fitting double-couple focal mechanism solution to both the P-wave first motion polarity records that were picked by network analysts, and the S/P amplitude ratios computed from three-component seismograms. This dataset includes around 179,000 focal mechanisms for earthquakes occurring 1981 through 2010 in southern California region. Updated datasets (through 9/30/2016) are included at the bottom of the linked page.1Licence not specifiedover 2 years ago
- FMI image log and mud log of well 52B-71Licence not specifiedover 2 years ago
- EMI (Electric Micro Imaging tool, Halliburton) image log in GMI Imager format. GMI Imager is software available from Baker Hughes and is used to open .img files.1Licence not specifiedover 2 years ago
- This project focused on defining geothermal play fairways and development of a detailed geothermal potential map of a large transect across the Great Basin region (96,000 km2), with the primary objective of facilitating discovery of commercial-grade, blind geothermal fields (i.e. systems with no surface hot springs or fumaroles) and thereby accelerating geothermal development in this promising region. Data included in this submission consists of: structural settings (target areas, recency of faulting, slip and dilation potential, slip rates, quality), regional-scale strain rates, earthquake density and magnitude, gravity data, temperature at 3 km depth, permeability models, favorability models, degree of exploration and exploration opportunities, data from springs and wells, transmission lines and wilderness areas, and published maps and theses for the Nevada Play Fairway area.1Licence not specifiedover 2 years ago
- Initial 3D gravity results from Zonge Int'l recorded for the 4D EGS Monitoring project at Newberry, during stimulation of Well 55-29 by AltaRock Energy1Licence not specifiedover 2 years ago
- Conceptual model for the Newberry Caldera geothermal area. Model is centered around caldera and evaluates geologic information in tandem with some geophysical datasets to derive a conceptual subsurface model. Includes: Geologic information from the USGS geologic map of Newberry and cross-sections from Sonnenthal et al, 2012 West flank seismic body representing a fractional change in seismic velocity of 0.1, defined in Beachly et al., 2012 and Heath et al., 2015 West flank gravity body "granite" that represents a gravity anomaly identified in Waibel et al., 2014 (DOE document, figure 35) Magma chamber defined seismically, found in Heath et al., 2015 Ring fracture fault intrusions Various faults sourced from the USGS geologic map of Newberry, Grasso et al. 2012's fault and fissure mapping1Licence not specifiedover 2 years ago
- Conceptual model for the Newberry Caldera geothermal area. Model is centered around caldera and evaluates multiple geophysical datasets to derive a conceptual subsurface model. Includes: Conductor layer based on transient electromagnetic data from Fitterman et al., 1988 (figure 10) Base of conductor layer based on MT conductor values found in Waibel et al., 2014 (DOE document, figure 38) Resistor layer based on magnetotellurics from Fitterman et al., 1988 (figure 13). Seismic intrusives layer representing a smoothed version of 5.5 km/s seismic velocity layer defined in Beachly et al., 2012 West flank seismic body representing a fractional change in seismic velocity of 0.1, defined in Beachly et al., 2012 and Heath et al., 2015 West flank gravity body "granite" that represents a gravity anomaly identified in Waibel et al., 2014 (DOE document, figure 35) Magma chamber defined seismically, found in Heath et al., 2015 Ring fracture fault intrusions Various faults and geologic layers1Licence not specifiedover 2 years ago
- Circumferential Borehole Imaging Log (CBIL) image log as DLIS file, and PDF mud log of well 33A-7 as part of the West Flank Coso, CA FORGE site.1Licence not specifiedover 2 years ago
- The data is associated to the Fallon FORGE project and includes mudlogs for all wells used to characterize the subsurface, as wells as gravity, magnetotelluric, earthquake seismicity, and temperature data from the Navy GPO and Ormat. Also included are geologic maps from the USGS and Nevada Bureau of Mines and Geology for the Fallon, NV area.1Licence not specifiedover 2 years ago
- This submission includes digitalized versions of the following: McCulloch Geothermal Corp Acord 1-26 Cover Letter McCulloch Geothermal Corp Acord 1-26 Drilling Plan McCulloch Geothermal Corp Acord 1-26 Bond Documents Division of Water Rights Permission to Drill Drillers Log Geothermal Data (Mud) Log Compensated Densilog - Neutron Log Dual Induction Focused Log BHC Acoustilog Differential Temperature Log Dual Induction Focused Log Gamma Ray Neutron Log Temperature Log Caliper Temperature Log (Run 3) Densilog Gamma Ray Neutron Log Temperature Log (Run 4) Compensated Densilog Sample Log (Page 1 of 2) Report of Well Driller Stratigraphic Report (J.E. Welsh) Photographs and Negatives of Acord 1-26 Well Site (7) Petrography Report (M.J. Sweeney) Cuttings Samples (21 Boxes at Utah Core Research Center)1Licence not specifiedover 2 years ago
- CBIL and STAR image logs as pre-processed DLIS files, and mud log of well 83-111Licence not specifiedover 2 years ago
- As part of the planning for stimulation of the Newberry Volcano Enhanced Geothermal Systems (EGS) Demonstration project in Oregon, a high-resolution borehole televiewer (BHTV) log was acquired using the ALT ABI85 BHTV tool in the slightly deviated NWG 55-29 well. The image log reveals an extensive network of fractures in a conjugate set striking approximately N-S and dipping 50 deg that are well oriented for normal slip and are consistent with surface-breaking regional normal faults in the vicinity. Similarly, breakouts indicate a consistent minimum horizontal stress, Shmin, azimuth of 092.3 +/- 17.3 deg. In conjunction with a suite of geophysical logs, a model of the stress magnitudes constrained by the width of breakouts at depth and a model of rock strength independently indicates a predominantly normal faulting stress regime.1Licence not specifiedover 2 years ago
- This dataset contain raw data files in kmz files (Google Earth georeference format). These files include volcanic vent locations and age, the distribution of fine-grained lacustrine sediments (which act as both a seal and an insulating layer for hydrothermal fluids), and post-Miocene faults compiled from the Idaho Geological Survey, the USGS Quaternary Fault database, and unpublished mapping. It also contains the Composite Common Risk Segment Map created during Phase 1 studies, as well as a file with locations of select deep wells used to interrogate the subsurface.1Licence not specifiedover 2 years ago
- Snake River Plain Geothermal Play Fairway Analysis Heat, Permeability, and Seal CRS Map Raster FilesSnake River Plain Play Fairway Analysis - Phase 1 CRS Raster Files. This dataset contains raster files created in ArcGIS. These raster images depict Common Risk Segment (CRS) maps for HEAT, PERMEABILITY, AND SEAL, as well as selected maps of Evidence Layers. These evidence layers consist of either Bayesian krige functions or kernel density functions, and include: (1) HEAT: Heat flow (Bayesian krige map), Heat flow standard error on the krige function (data confidence), volcanic vent distribution as function of age and size, groundwater temperature (equivalue interval and natural breaks bins), and groundwater T standard error. (2) PERMEABILTY: Fault and lineament maps, both as mapped and as kernel density functions, processed for both dilational tendency (TD) and slip tendency (ST), along with data confidence maps for each data type. Data types include mapped surface faults from USGS and Idaho Geological Survey data bases, as well as unpublished mapping; lineations derived from maximum gradients in magnetic, deep gravity, and intermediate depth gravity anomalies. (3) SEAL: Seal maps based on presence and thickness of lacustrine sediments and base of SRP aquifer. Raster size is 2 km. All files generated in ArcGIS.1Licence not specifiedover 2 years ago
- Six samples were evaluated in unconfined and triaxial compression, their data are included in separate excel spreadsheets, and summarized in the word document. Three samples were plugged along the axis of the core (presumed to be nominally vertical) and three samples were plugged perpendicular to the axis of the core. A designation of "V"indicates vertical or the long axis of the plugged sample is aligned with the axis of the core. Similarly, "H" indicates a sample that is nominally horizontal and cut orthogonal to the axis of the core. Stress-strain curves were made before and after the testing, and are included in the word doc. The confining pressure for this test was 2800 psi. A series of tests are being carried out on to define a failure envelope, to provide representative hydraulic fracture design parameters and for future geomechanical assessments. The samples are from well 52-21, which reaches a maximum depth of 3581 ft +/- 2 ft into a gneiss complex.1Licence not specifiedover 2 years ago
- Final results of a 3D finite difference thermal model of Newberry Volcano, Oregon. Model data are formatted as a text file with four data columns (X, Y, Z, T). X and Y coordinates are in UTM (NAD83 Zone 10N), Z is elevation from mean sea level (meters), T is temperature in deg C. Model is 40km X 40km X 12.5 km, grid node spacing is 100m in X, Y, and Z directions. A symmetric cylinder shaped magmatic heat source centered on the present day caldera is the modeled heat source. The center of the modeled body is a -1700 m (elevation) and is 600m thick with a radius of 8700m. This is the best fit results from 2D modeling of the west flank of the volcano. The model accounts for temperature dependent thermal properties and latent heat of crystallization. For additional details, assumptions made, data used, and a discussion of the validity of the model see Frone, 2015 (Link below).1Licence not specifiedover 2 years ago
- The individual shapefiles in this dataset delineate estimated temperature contours (20, 40, 60, and 80 deg C) at a depth of 200 m in the Milford, Utah FORGE area. Contours were derived from 86 geothermal, gradient, and other wells drilled in the area since the mid-1970s with depths greater than 50 m. Conductive temperature profiles for wells less than 200 m were extrapolated to determine the temperature at the desired depth. Because 11 wells in the eastern section of the study area (in and around the Mineral Mountains) are at higher elevations compared to those closer to the center of the basin, temperature profiles were extrapolated to a constant elevation of 200 m below the 1830 m (6000 ft) a.s.l. datum (approximate elevation of alluvial fans at the base of the Mineral Mountains) to smooth the contours across the ridges and valleys.1Licence not specifiedover 2 years ago
- Three shapefiles in this submission show the position of proposed seismic line surveys. The mid-crustal velocity anomaly file shows the extent of an anomalously low P-wave velocity zone in the subsurface. Two other files show the extent of known hydrothermal systems in the Roosevelt Hot Springs area. Another file shows the location of the proposed water pipeline to pump water from the supply wells to the deep drill site.1Licence not specifiedover 2 years ago
- This submission includes two modeled drawdown scenarios with new supply well locations, a total dissolved solids (TDS) concentration grid (raster dataset representing the spatial distribution of TDS), and an excel spreadsheet containing well data.1Licence not specifiedover 2 years ago
- This is a zipped GIS compatible shapefile of gravity data points used in the Milford, Utah FORGE project as of March 21st, 2016. The shapefile is native to ArcGIS, but can be used with many GIS software packages. Additionally, there is a .dbf (dBase) file that contains the dataset which can be read with Microsoft Excel. The Data was downloaded from the PACES (Pan American Center for Earth and Environmental Studies) hosted by University of Texas El Paso. A readme file is included in the archive with abbreviation explanations and units.1Licence not specifiedover 2 years ago
- These data are Pacific Northwest National Lab inversions of an amalgamation of two surface gravity datasets: Davenport-Newberry gravity collected prior to 2012 stimulations and Zonge International gravity collected for the project "Novel use of 4D Monitoring Techniques to Improve Reservoir Longevity and Productivity in Enhanced Geothermal Systems" in 2012. Inversions of surface gravity recover a 3D distribution of density contrast from which intrusive igneous bodies are identified. The data indicate a body name, body type, point type, UTM X and Y coordinates, Z data is specified as meters below sea level (negative values then indicate elevations above sea level), thickness of the body in meters, suscept, density anomaly in g/cc, background density in g/cc, and density in g/cc. The model was created using a commercial gravity inversion software called ModelVision 12.0 (http://www.tensor-research.com.au/Geophysical-Products/ModelVision). The initial model is based on the seismic tomography interpretation (Beachly et al., 2012). All the gravity data used to constrain this model are on the GDR: https://gdr.openei.org/submissions/760.1Licence not specifiedover 2 years ago
- This submission includes the geographic extent shapefile of the Milford FORGE site located in Utah, along with a shapefile of seismometer positions throughout the area, and models of basin depth and potentiometric contours.1Licence not specifiedover 2 years ago
- This submission contains a shapefile of heat flow contour lines around the FORGE site located in Milford, Utah. The model was interpolated from data points in the Milford_wells shapefile. This heat flow model was interpolated from 66 data points using the kriging method in Geostatistical Analyst tool of ArcGIS. The resulting model was smoothed 100%. The well dataset contains 59 wells from various sources, with lat/long coordinates, temperature, quality, basement depth, and heat flow. This data was used to make models of the specific characteristics.1Licence not specifiedover 2 years ago
- This submission includes a shapefile of the Opal Mound Fault, and multiple datasets of lineaments mapped in the Mineral Mountains which overlook the Utah FORGE site, hyperlinked to rose diagrams in a polygon grid shapefile.1Licence not specifiedover 2 years ago
- There are two zipped folders in this submission. One contains a shapefile with the position of MT stations around the Milford FORGE Site, while the other has the raw MT data.1Licence not specifiedover 2 years ago
- This submission contains several ArcGIS shapefiles, each with Temperature contour lines at different depths. Subsurface temperature were important for characterizing the geothermal system beneath the FORGE site in Milford, Utah.1Licence not specifiedover 2 years ago
- This GDR submission is an interim technical report and raw data files from the first year of testing on functionalized nanoparticles for rare earth element extraction from geothermal fluids. The report contains Rare Earth Element uptake results (percent removal, mg Rare Earth Element/gram of sorbent, distribution coefficient) for the elements of Neodymium, Europium, Yttrium, Dysprosium, and Cesium. A detailed techno economic analysis is also presented in the report for a scaled up geothermal rare earth element extraction process. All rare earth element uptake testing was done on simulated geothermal brines with one rare earth element in each brine. The rare earth element uptake testing was conducted at room temperature.1Licence not specifiedover 2 years ago
- This is a compilation of logs and data from Well Acord 1-26 in the Roosevelt Hot Springs area in Utah. This well is also in the Utah FORGE study area. Logs include: mud log (45'-12645'), compensated densilog (1102'-7923', 7900'-12644'), neutron log (1102'-7923'), dual induction focused logs (1100'-7923', 7904'-11447'), BHC acoustilog (7800'-11439'), differential temperature log (380'-11448'), gamma ray neutron logs (7900'-12148', 12000'-12647'), temperature logs (7900'-12144', 7900'-12145', 7800'-12655', 7900'-12655'), and caliper log (7800'-12655'), densilog (7900'-12655'). The file is in a compressed .zip format and there is a data inventory table (Excel spreadsheet) in the root folder that is a guide to the data that is accessible in subfolders.1Licence not specifiedover 2 years ago
- This is a compilation of logs and data from Well 82-33 in the Roosevelt Hot Springs area in Utah. This well is also in the Utah FORGE study area. The file is in a compressed .zip format and there is a data inventory table (Excel spreadsheet) in the root folder that is a guide to the data that is accessible in subfolders.1Licence not specifiedover 2 years ago
- This is a compilation of logs and data from Well 52-21 in the Roosevelt Hot Springs area in Utah. This well is also in the Utah FORGE study area. The file is in a compressed .zip format and there is a data inventory table (Excel spreadsheet) in the root folder that is a guide to the data that is accessible in subfolders.1Licence not specifiedover 2 years ago
- This is a compilation of logs and data from Well 14-2 in the Roosevelt Hot Springs area in Utah. This well is also in the Utah FORGE study area. Data includes: flowmeter survey (1989), geochemistry (1977-1978, 1977-1983), injection test data (1979, 1982), and spinner surveys (1989, 1985-1986). Logs include: borehole compensated sonic and gamma ray (600'-6112'), borehole geometry and gamma ray (50'-4829'), caliper (0'-1720'), compensated neutron formation density (600'-6121'), induction electric (650'-6118'), mud log (79'-6100'), steam injection survey (50'-1175'), subsurface pressure surveys (0'-6087'), and subsurface temperature surveys (0'-6106'). The file is in a compressed .zip format and there is a data inventory table (Excel spreadsheet) in the root folder that is a guide to the data that is accessible in subfolders.1Licence not specifiedover 2 years ago
- This is a compilation of logs and data from Well 9-1 in the Roosevelt Hot Springs area in Utah. This well is also in the Utah FORGE study area. The file is in a compressed .zip format and there is a data inventory table (Excel spreadsheet) in the root folder that is a guide to the data that is accessible in subfolders.1Licence not specifiedover 2 years ago
- This is a link to Pan American Center for Earth and Environmental Studies (PACES) which facilitates the download of gravity and magnetic data. Part of the gravity data used in the Utah FORGE project can be found here.1Licence not specifiedover 2 years ago
- This is a link to the Automated Geographic Reference Center (AGRC) that houses GIS data for the state of Utah. This includes geoscience, cadastre, elevation and terrain, digital aerial photography, roads, aquifer data, etc. Several GIS datasets used in the Utah FORGE project originated from this site.1Licence not specifiedover 2 years ago
- This is a link to the USGS Global Visualization Viewer which can be used to locate and download a variety of remotely sensed data including the ASTER multispectral data that was used in the Utah FORGE project.1Licence not specifiedover 2 years ago
- This is a link to Utah geology maps in both pdf and GIS formats. This includes the geology of the Utah FORGE area. This site is maintained by the Utah Geological Survey.1Licence not specifiedover 2 years ago
- This site contains information and data related to Utah earthquakes. It is maintained by the USGS Earthquake Hazards Program. This site contains information relevant to the Utah FORGE project.1Licence not specifiedover 2 years ago
- This is a website containing Utah seismograph stations. It is maintained at the University of Utah. This site contains data relevant to the Utah FORGE project.1Licence not specifiedover 2 years ago
- This is a temperature gradient database for Utah, USA. It is located at the Utah Geological Survey. This contains data relevant to the Utah FORGE project.1Licence not specifiedover 2 years ago
- This is a database containing water chemistry of wells and springs in Utah. The data is located at the Utah Geological Survey. This contains data relevant to the Utah FORGE project.1Licence not specifiedover 2 years ago
- A database of groundwater chemistry in the Great Basin, USA. The data is located at the Nevada Bureau of Mines and Geology. This contains data relevant to the Utah FORGE site.1Licence not specifiedover 2 years ago
- This spreadsheet allows the user to calculate parameters relevant to techno-economic performance of a two-step absorption process to transport low temperature geothermal heat some distance (1-20 miles) for use in building air conditioning. The parameters included are (1) energy density of aqueous LiBr and LiCl solutions, (2) transportation cost of trucking solution, and (3) equipment cost for the required chillers and cooling towers in the two-step absorption approach. More information is available in the included public report: "A Technical and Economic Analysis of an Innovative Two-Step Absorption System for Utilizing Low-Temperature Geothermal Resources to Condition Commercial Buildings"1Licence not specifiedover 2 years ago
- This data submission is for Phase 2 of Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations, which focuses on multi-fluid (CO2 and brine) geothermal energy production and diurnal bulk energy storage in geologic settings that are suitable for geologic CO2 storage. This data submission includes all data used in the Geosphere Journal article by Buscheck et al (2016). All assumptions are discussed in that article.1Licence not specifiedover 2 years ago
- Google Earth .kmz files that contain the locations of geothermal wells and thermal springs in the USA, and seafloor hydrothermal vents that have associated rare earth element data. The file does not contain the actual data, the actual data is available through the GDR website in two tier 3 data sets entitled "Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge (MOR) Hydrothermal Vents" and "Rare earth element content of thermal fluids from Surprise Valley, California"1Licence not specifiedover 2 years ago
- Data includes characterization results for novel thermoelectric materials developed specifically for power generation from low temperature geothermal brines. Materials characterization data includes material density, thickness, resistance, Seebeck coefficient. This research was carried out by Novus Energy Partners in Cooperation with Southern Research Institute for a Department of Energy Sponsored Project.1Licence not specifiedover 2 years ago
- This document provides results of experiments aimed at removing silica from geothermal brines. All experiments were conducted with simulated brines. The data presented shows the effect of iron addition, kinetics, temperature, pH and brine concentration.1Licence not specifiedover 2 years ago
- Lithium sorption information from experiments. Data includes the effects of pH, temperature and brine chemistry on the sorption of Lithium from a simulated geothermal brine. The sorbent used in the experiments is "hydrothermally produced, Spinel-LiMn2O4". The sorbent was produced by Carus Corporation.1Licence not specifiedover 2 years ago
- Results from a nanofiltration study utilizing simulated geothermal brines. The data includes a PDF documenting the process used to remove Calcium, Magnesium, Sodium, Silica, Lithium, Chlorine, and Sulfate from simulated geothermal brines. Three different membranes were evaluated. The results were analyzed using inductively coupled plasma mass spectrometry (ICP-MS).1Licence not specifiedover 2 years ago
- The work evaluates, develops and demonstrates flexible, scalable mineral extraction technology for geothermal brines based upon solid phase sorbent materials with a specific focus upon rare earth elements (REEs). The selected organic and inorganic sorbent materials demonstrated high performance for collection of trace REEs, precious and valuable metals. The nanostructured materials typically performed better than commercially available sorbents. Data contains organic and inorganic sorbent removal efficiency, Sharkey Hot Springs (Idaho) water chemistry analysis, and rare earth removal efficiency from select sorbents. The Sharkley Hot Springs water chemistry presented includes spiked levels of REEs.1Licence not specifiedover 2 years ago
- Rare earth element measurements for thermal fluids from Surprise Valley, California. Samples were collected in acid washed HDPE bottles and acidified with concentrated trace element clean (Fisher Scientific) nitric acid. Samples were pre-concentrated by a factor of approximately 10 using chelating resin with and IDA functional group and measured on magnetic sector ICP-MS. Samples include Seyferth Hot Springs, Surprise Valley Resort Mineral Well, Leonard's Hot Spring, and Lake City Mud Volcano Boiling Spring.1Licence not specifiedover 2 years ago
- This report describes all of the work done in Phase I of a geothermal exploration project in the Tularosa Basin, as well as an outline for Phase II work, and more.1Licence not specifiedover 2 years ago
- This dataset includes chemistry of geothermal water samples of the Eastern Snake River Plain and surrounding area. The samples included in this dataset were collected during the springs and summers of 2014 and 2015. All chemical analysis of the samples were conducted in the Analytical Laboratory at the Center of Advanced Energy Studies in Idaho Falls, Idaho. This data set supersedes #425 submission and is the final submission for AOP 3.1.2.1 for INL. Isotopic data collected by Mark Conrad will be submitted in a separate file.1Licence not specifiedover 2 years ago
- This is a final report summarizing a one-year (2014-15) DOE funded Geothermal Play Fairway Analysis of the Low-Temperature resources of the Appalachian Basin of New York, Pennsylvania and West Virginia. Collaborators included Cornell University, Southern Methodist University, and West Virginia University. As a result of the research, 'play fairways' were identified for further study, based on four 'risk' criteria: 1) the Thermal Resource Quality, 2) the Natural Reservoir Quality, 3) the Risk of Seismic Activity, and the 4) Utilization Viability. In addition to the final report document, this submission includes project 'memos' referred to throughout the report. Many of these same memos are also provided in the submission with the detailed data products accompanying the relevant risk factor (thermal, reservoir, seismicity, and utilization). A portion of the executive overview follows: Geothermal energy is an attractive sustainable energy source. Project developers need confirmation of the resource base to warrant their time and financial resources. The hydrocarbon industry has addressed exploration and development complexities through use of a technique referred to as Play Fairway Analysis (PFA). The PFA technique assigns risk metrics that communicate the favorability of potential hydrocarbon bearing reservoirs in order to enable prudent allocation of exploration and development resources. The purpose of this Department of Energy funded effort is to apply the PFA approach to geothermal exploration and development, thus providing a technique for Geothermal Play Fairway Analysis (GPFA). This project focuses on four risk factors of concern for direct-use geothermal plays in the Appalachian Basin (AB) portions of New York, Pennsylvania, and West Virginia (Figure 1). These risk factors are 1) thermal resource quality, 2) natural reservoir quality, 3) induced seismicity, and 4) utilization opportunities (Figure 2). This research expands upon and updates methodologies used in previous assessments of the potential for geothermal fields and utilization in the Appalachian Basin, and also introduces novel approaches and metrics for quantification of geothermal reservoir productivity in sedimentary basins. Unique to this project are several methodologies for combining the risk factors into a single commensurate objective that communicates the estimated overall favorability of geothermal development. Uncertainty in the risk estimation is also quantified. Based on these metrics, geothermal plays in the Appalachian Basin were identified as potentially viable for a variety of direct-use-heat applications. The methodologies developed in this project may be applied in other sedimentary basins as a foundation for low temperature (50-150 degC), direct use geothermal resource, risk, and uncertainty assessment. Through our identification of plays, this project reveals the potential for widespread assessment of low-temperature geothermal energy from sedimentary basins as an alternative to current heating sources that are unsustainable. There is an important distinction in this Geothermal Play Fairway Analysis project as compared to hydrothermal projects: this Appalachian Basin analysis is focused on the direct use of the heat, rather than on electrical production. Lindal (1973) illuminated numerous industrial and other low-temperature applications of geothermal energy for which this analysis can be useful. The major relationship to electricity is that direct-use applications reduce the electricity requirements for a region. Even though all of the geothermal resources in the Appalachian Basin are low grade, the high population and high heating demand across New York, Pennsylvania, and West Virginia translate into economic advantages if geothermal direct-use heating replaces electricity-based heating. The advantage is derived from the high efficiency of extracting heat from geothermal fluids rather than converting the fluids to electricity (Tester et al., 2015).1Licence not specifiedover 2 years ago
- Final Report describing data collection, evaluation, modeling and analysis. Ranking of Cascade and Aleutian volcanic centers for geothermal potential.1Licence not specifiedover 2 years ago
- Links to GPS RINEX data not previously reported, plus links to station web pages, which include most up-to-date time-series1Licence not specifiedover 2 years ago
- Files with links to RINEX files for station BRDY not previously reported1Licence not specifiedover 2 years ago
- Files with links to RINEX files for station BRAD not previously reported1Licence not specifiedover 2 years ago
- Various data sets displayed on a 2km grid for the Play Fairway Analysis CA-NV-OR area. Grids at 2km, updated from 5km.1Licence not specifiedover 2 years ago
- Various data sets displayed on a 2km grid for the Play Fairway Analysis CA-NV-OR area.1Licence not specifiedover 2 years ago
- Magnetotelluric (MT) data for Medicine lake with 2km grid.1Licence not specifiedover 2 years ago
- Various geophysical exploration data for San Emidio KGRA1Licence not specifiedover 2 years ago
- Combined geochemical and geophysical data, weighted and ranked for geothermal prospect favorability.1Licence not specifiedover 2 years ago
- Subset of all Aqueous Geochemistry, selected for UCD PF area only.1Licence not specifiedover 2 years ago
- Tabular aqueous geochemistry data files for the Play Fairway Analysis CA-NV-OR area.1Licence not specifiedover 2 years ago
- ArcGIS Map Package with MT Station Locations, 2D Seismic Lines, Well data, Known Regional Hydrothermal Systems, Regional Historic Earthquake Seismicity, Regional Temperature Gradient Data, Regional Heat Flow Data, Regional Radiogenic Heat Production, Local Geology, Land Status, Cultural Data, 2m Temperature Probe Data, and Gravity Data. Also a detailed down-hole lithology notes are provided.1Licence not specifiedover 2 years ago
- Photos and detailed downhole lithology notes for wells CGEH-1 and 74-2 at the West Flank Coso, Ca FORGE location.1Licence not specifiedover 2 years ago
- Geologic ArcGIS data of West Flank Coso, Ca FORGE site from a unpublished map by Rich Whitmarsh. The zip file includes a DEM, hillshade and four shapefiles of the general outlines of FORGE area.1Licence not specifiedover 2 years ago
- Study of rare earth element (REE) uptake from geothermal brine simulant by column loading, metal recovery through stripping, and regeneration of column for re-loading. Simulated brine testing.1Licence not specifiedover 2 years ago
- Raw data and data workup of assay for real-world brine sample. Brine sample was taken at the well head.1Licence not specifiedover 2 years ago
- Contains Excel data files used to quantifiably rank the geothermal potential of each of the young volcanic centers of the Cascade and Aleutian Arcs using world power production volcanic centers as benchmarks. Also contains shapefiles used in play fairway analysis with power plant, volcano, geochemistry and structural data.1Licence not specifiedover 2 years ago
- Batch tests of manganese imprinted polymers of variable composition to assess their ability to extract lithium and manganese from synthetic brines at T = 45 deg C . Data on manganese uptake for two consecutive cycles are included.1Licence not specifiedover 2 years ago
- Batch tests of lithium imprinted polymers of variable composition to assess their ability to extract lithium from synthetic brines at T = 45 degC. Initial selectivity data are included1Licence not specifiedover 2 years ago
- This is a hydrothermal alteration map of the Tularosa Basin area, New Mexico and Texas that was created using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral data band ratios based upon diagnostic features of clay, calcite, silica, gypsum, ferric iron, and ferrous iron. Mesoproterozoic granite in the San Andreas Range often appeared altered, but this may be from clays produced by weathering or, locally, by hydrothermal alteration. However, no field checking was done.1Licence not specifiedover 2 years ago
- This shapefile contains 409 well data points on Tularosa Basin Water Chemistry, each of which have a location (UTM), temperature, quartz and Potassium/Magnesium geothermometer; as well as concentrations of chemicals like Mn, Fe, Ba, Sr, Cs, Rb, As, NH4, HCO3, SO4, F, Cl, B, SiO2, Mg, Ca, K, Na, and Li.1Licence not specifiedover 2 years ago
- These models are related to weights of evidence play fairway anlaysis of the Tularosa Basin, New Mexico and Texas. They were created through Spatial Data Modeler: ArcMAP 9.3 geoprocessing tools for spatial data modeling using weights of evidence, logistic regression, fuzzy logic and neural networks. It used to identify high values for potential geothermal plays and low values. The results are relative not only within the Tularosa Basin, but also throughout New Mexico, Utah, Nevada, and other places where high to moderate enthalpy geothermal systems are present (training sites).1Licence not specifiedover 2 years ago
- The evolution of flow pattern along a single fracture and its effects on heat production is a fundamental problem in the assessments of engineered geothermal systems (EGS). The channelized flow pattern associated with ubiquitous heterogeneity in fracture aperture distribution causes non-uniform temperature decrease in the rock body, which makes the flow increasingly concentrated into some preferential paths through the action of thermal stress. This mechanism may cause rapid heat production deterioration of EGS reservoirs. In this study, we investigated the effects of aperture heterogeneity on flow pattern evolution in a single fracture in a low-permeability crystalline formation. We developed a numerical model on the platform of GEOS to simulate the coupled thermo-hydro-mechanical processes in a penny-shaped fracture accessed via an injection well and a production well. We find that aperture heterogeneity generally exacerbates flow channeling and reservoir performance generally decreases with longer correlation length of aperture field. The expected production life is highly variable (5 years to beyond 30 years) when the aperture correlation length is longer than 1/5 of the well distance, whereas a heterogeneous fracture behaves similar to a homogeneous one when the correlation length is much shorter than the well distance. Besides, the mean production life decreases with greater aperture standard deviation only when the correlation length is relatively long. Although flow channeling is inevitable, initial aperture fields and well locations that enable tortuous preferential paths tend to prolong heat production lives.1Licence not specifiedover 2 years ago
- We investigate the flow-channeling phenomenon caused by thermal drawdown in fractured geothermal reservoirs. A discrete fracture network-based, fully coupled thermal "hydrological" mechanical simulator is used to study the interactions between fluid flow, temperature change, and the associated rock deformation. The responses of a number of randomly generated 2D fracture networks that represent a variety of reservoir characteristics are simulated with various injection-production well distances. We find that flow channeling, namely flow concentration in cooled zones, is the inevitable fate of all the scenarios evaluated. We also identify a secondary geomechanical mechanism caused by the anisotropy in thermal stress that counteracts the primary mechanism of flow channeling. This new mechanism tends, to some extent, to result in a more diffuse flow distribution, although it is generally not strong enough to completely reverse flow channeling. We find that fracture intensity substantially affects the overall hydraulic impedance of the reservoir but increasing fracture intensity generally does not improve heat production performance. Increasing the injection-production well separation appears to be an effective means to prolong the production life of a reservoir. DOI: 10.1007/s00603-015-0776-0.1Licence not specifiedover 2 years ago
- We developed a model for fracture production produced during detonation of an explosive mixture in a 10m packed off section of a shallow borehole. The model is based upon an actual field and lab experiments on low-damage borehole fracturing performed at Sandia National Labs by Mark Grubelich in 2014. The simulation was developed by O. Vorobiev at LLNL.1Licence not specifiedover 2 years ago
- A DEM of the Tularosa Basin was divided into twelve zones, each of which a ZR ratio was calculated for. This submission has a TIFF image of the zoning designations, along with a table with respective ZR ratio calculations in the metadata. The primary results are in the table below, and high ZR ratio values indicate relatively high strain rates. Zone ZR ratio 1 1.2852479 2 1.17442846 3 0.89700274 4 0.74546427 5 0.99841793 6 0.86434253 7 0.83016287 8 1.91696538 9 1.13691977 10 1.68062953 11 1.23044486 12 1.131608871Licence not specifiedover 2 years ago
- This submission has two shapefiles and a tiff image. The weights of evidence analysis was applied to data representing heat of the earth and fracture permeability using training sites around the Southwest; this is shown in the tiff image. A shapefile of surface temperature anomalies was derived from the statistical analysis of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared data which had been converted to surface temperatures; these anomalies have not been field checked. The second shapefile shows outcrop mineralogy which originally mapped by the New Mexico Bureau of Geology and Mineral Resources, and supplemented with mineralogic information related to rock fracability risk for EGS. Further metadata can be found within each file.1Licence not specifiedover 2 years ago
- A map with the Coso West Flank FORGE test area outlined, along with regional seismicity, the aeromagnetic data set and the area currently being utilized for the creation of the 3D model.1Licence not specifiedover 2 years ago
- This submission contains several shapefiles used for a deterministic PFA, as well as a heat composite risk segment with union overlay, and training sites used for weights of evidence. More detailed metadata can be found in the specific file.1Licence not specifiedover 2 years ago
- This PDF outlines the experiments for determining the amount of ligand bleed from our Media #1 at various temperatures and pH's.1Licence not specifiedover 2 years ago
- The maps in this submission include: heat flow, alkalinity, Cl, Mg, SiO2, Quaternary volcanic rocks, faults, and land ownership. All of the Oregon Cascade region. The work was done by John Trimble, in 2015, at Oregon State University.1Licence not specifiedover 2 years ago
- This submission includes a fault map of the Oregon Cascades and backarc, a probability map of heat flow, and a fault density probability layer. More extensive metadata can be found within each zip file. For information about "Oregon Faults," contact John David Trimble, Oregon State University. trimbljo@onid.oregonstate.edu1Licence not specifiedover 2 years ago
- In this submission is the groundwater composite risk segment (CRS) used for play fairway analysis. Also included is a heat flow probability map, and a shaded relief map of the Tularosa Basin, NM.1Licence not specifiedover 2 years ago
- This submission includes a geotiff of the geographic extent of Pleistocene Lake Otero; which was used as apart of the groundwater composite risk segment in a Tularosa Basin Play Fairway Analysis.1Licence not specifiedover 2 years ago
- Within this submission are multiple .tif images with accompanying metadata of magnetotelluric conductor occurrence, fault critical stress composite risk segment (CRS), permeability CRS, Quaternary mafic extrusions, Quaternary fault density, and Quaternary rhyolite maps. Each of these contributed to a final play fairway analysis (PFA) for the SE Great Basin study area.1Licence not specifiedover 2 years ago
- This file contains file geodatabases of the Mount St. Helens seismic zone (MSHSZ), Wind River valley (WRV) and Mount Baker (MB) geothermal play-fairway sites in the Washington Cascades. The geodatabases include input data (feature classes) and output rasters (generated from modeling and interpolation) from the geothermal play-fairway in Washington State, USA. These data were gathered and modeled to provide an estimate of the heat and permeability potential within the play-fairways based on: mapped volcanic vents, hot springs and fumaroles, geothermometry, intrusive rocks, temperature-gradient wells, slip tendency, dilation tendency, displacement, displacement gradient, max coulomb shear stress, sigma 3, maximum shear strain rate, and dilational strain rate at 200m and 3 km depth. In addition this file contains layer files for each of the output rasters. For details on the areas of interest please see the 'Phase 1 Technical Report' in the download package. This submission also includes a file with the geothermal favorability of the Washington Cascade Range based off of an earlier statewide assessment. Additionally, within this file there are the maximum shear and dilational strain rate rasters for all of Washington State.1Licence not specifiedover 2 years ago
- Spreadsheet containing chlorite, illite, and biotite rate data and rate equations that can be used in reactive transport simulations. Submission includes a report on the development of the rate laws.1Licence not specifiedover 2 years ago
- This collection of files are part of a larger dataset uploaded in support of Low Temperature Geothermal Play Fairway Analysis for the Appalachian Basin (GPFA-AB). Phase 1 of the GPFA-AB project identified potential Geothermal Play Fairways within the Appalachian basin of Pennsylvania, West Virginia and New York. This was accomplished through analysis of 4 key criteria: thermal quality, natural reservoir productivity, risk of seismicity, and heat utilization. Each of these analyses represent a distinct project task, with the fifth task encompassing combination of the 4 risks factors. Supporting data for all five tasks has been uploaded into the Geothermal Data Repository node of the National Geothermal Data System (NGDS). This submission comprises the data for Thermal Quality Analysis (project task 1) and includes all of the necessary shapefiles, rasters, datasets, code, and references to code repositories that were used to create the thermal resource and risk factor maps as part of the GPFA-AB project. The identified Geothermal Play Fairways are also provided with the larger dataset. Figures (.png) are provided as examples of the shapefiles and rasters. The regional standardized 1 square km grid used in the project is also provided as points (cell centers), polygons, and as a raster. Two ArcGIS toolboxes are available: 1) RegionalGridModels.tbx for creating resource and risk factor maps on the standardized grid, and 2) ThermalRiskFactorModels.tbx for use in making the thermal resource maps and cross sections. These toolboxes contain item description documentation for each model within the toolbox, and for the toolbox itself. This submission also contains three R scripts: 1) AddNewSeisFields.R to add seismic risk data to attribute tables of seismic risk, 2) StratifiedKrigingInterpolation.R for the interpolations used in the thermal resource analysis, and 3) LeaveOneOutCrossValidation.R for the cross validations used in the thermal interpolations. Some file descriptions make reference to various 'memos'. These are contained within the final report submitted October 16, 2015. Each zipped file in the submission contains an 'about' document describing the full Thermal Quality Analysis content available, along with key sources, authors, citation, use guidelines, and assumptions, with the specific file(s) contained within the .zip file highlighted. UPDATE: Newer version of the Thermal Quality Analysis has been added here: https://gdr.openei.org/submissions/879 (Also linked below) Newer version of the Combined Risk Factor Analysis has been added here: https://gdr.openei.org/submissions/880 (Also linked below)1Licence not specifiedover 2 years ago
- This submission includes maps of the spatial distribution of basaltic, and felsic rocks in the Oregon Cascades. It also includes a final Play Fairway Analysis (PFA) model, with the heat and permeability composite risk segments (CRS) supplied separately. Metadata for each raster dataset can be found within the zip files, in the TIF images1Licence not specifiedover 2 years ago
- Tularosa Basin Play Fairway Analysis: Partial Basin and Range Heat and Zones of Critical Stress MapsInterpolated maps of heat flow, temperature gradient, and quartz geothermometers are included as TIF files. Zones of critical stress map is also included as a TIF file. The zones are given a 5km diameter buffer. The study area is only a part of the Basin and Range, but it does includes the Tularosa Basin.1Licence not specifiedover 2 years ago
- These images show the comprehensive methodology used for creation of a Play Fairway Analysis to explore the geothermal resource potential of the Tularosa Basin, New Mexico. The deterministic methodology was originated by the petroleum industry, but was custom-modified to function as a knowledge-based geothermal exploration tool. The stochastic PFA flow chart uses weights of evidence, and is data-driven.1Licence not specifiedover 2 years ago
- All datasets and products specific to the Steptoe Valley model area. Includes a packed ArcMap project (.mpk), individually zipped shapefiles, and a file geodatabase for the northern Steptoe Valley area; a GeoSoft Oasis montaj project containing GM-SYS 2D gravity profiles along the trace of our seismic reflection lines; a 3D model in EarthVision; spreadsheet of links to published maps; and spreadsheets of well data.1Licence not specifiedover 2 years ago
- This submission of Utilization Analysis data to the Geothermal Data Repository (GDR) node of the National Geothermal Data System (NGDS) is in support of Phase 1 Low Temperature Geothermal Play Fairway Analysis for the Appalachian Basin. The submission includes data pertinent to the methods and results of an analysis of the Surface Levelized Cost of Heat (SLCOH) for US Census Bureau Places within the study area. This was calculated using a modification of a program called GEOPHIRES, available at http://koenraadbeckers.net/geophires/index.php. The MATLAB modules used in conjunction with GEOPHIRES, the MATLAB data input file, the GEOPHIRES output data file, and an explanation of the software components have been provided. Results of the SLCOH analysis appear on 4 .png image files as mapped risk of heat utilization. For each of the 4 image (.png) files, there is an accompanying georeferenced TIF (.tif) file by the same name. In addition to calculating SLCOH, this Task 4 also identified many sites that may be prospects for use of a geothermal district heating system, based on their size and industry, rather than on the SLCOH. An industry sorted listing of the sites (.xlsx) and a map of these sites plotted as a layer onto different iterations of maps combining the three geological risk factors (Thermal Quality, Natural Reservoir Quality, and Risk of Seismicity) has been provided. In addition to the 6 image (.png) files of the maps in this series, a shape (.shp) file and 7 associated files are included as well. Finally, supporting files (.pdf) describing the utilization analysis methodology and summarizing the anticipated permitting for a deep district heating system are supplied. UPDATE: Newer version of the Utilization Analysis has been added here: https://gdr.openei.org/submissions/8781Licence not specifiedover 2 years ago
- This submission contains information used to compute the risk factors for the GPFA-AB project. The risk factors are natural reservoir quality, thermal resource quality, potential for induced seismicity, and utilization. The methods used to combine the risk factors included taking the product, sum, and minimum of the four risk factors. The files are divided into images, rasters, shapefiles, and supporting information. The image files show what the raster and shapefiles should look like. The raster files contain the input risk factors, calculation of the scaled risk factors, and calculation of the combined risk factors. The shapefiles include definition of the fairways, definition of the US Census Places, the center of the raster cells, and locations of industries. Supporting information contains details of the calculations or processing used in generating the files. An image of the raster will have the same name except *.png as the file ending instead of *.tif. Images with 'fairways' or 'industries' added to the name are composed of a raster with the relevant shapefile added. The file About_GPFA-AB_Phase1RiskAnalysisTask5DataUpload.pdf contains information the citation, special use considerations, authorship, etc. ***See 'GPFA-AB.zip' at bottom for compressed and organized version of the files associated with this submission*** **More details (including location) on each file are given in the spreadsheet 'list_of_contents.csv' in the folder 'SupportingInfo'** Code used to calculate values is available: https://github.com/calvinwhealton/geothermal_pfa under the folder 'combining_metrics' - *See link below*1Licence not specifiedover 2 years ago
- In September 2013, an experiment using Distributed Acoustic Sensing (DAS) was conducted at Garner Valley, a test site of the University of California Santa Barbara (Lancelle et al., 2014). This submission includes all DAS data recorded during the experiment. The sampling rate for all files is 1000 samples per second. Any files with the same filename but ending in _01, _02, etc. represent sequential files from the same test. Locations of the sources are plotted on the basemap in GDR submission 481, titled: "PoroTomo Subtask 3.2 Sample data from a Distributed Acoustic Sensing experiment at Garner Valley, California (PoroTomo Subtask 3.2)." Lancelle, C., N. Lord, H. Wang, D. Fratta, R. Nigbor, A. Chalari, R. Karaulanov, J. Baldwin, and E. Castongia (2014), Directivity and Sensitivity of Fiber-Optic Cable Measuring Ground Motion using a Distributed Acoustic Sensing Array (abstract # NS31C-3935), AGU Fall Meeting. https://agu.confex.com/agu/fm14/webprogram/Paper19828.html The e-poster is available at: https://agu.confex.com/data/handout/agu/fm14/Paper_19828_handout_696_0.pdf1Licence not specifiedover 2 years ago
- Pushing the boundaries with geothermal tool development can often necessitate exceeding manufacturer specifications for temperature and pressure of individual circuit components. Detailed here are the efforts surrounding geothermal temperature characterization of commercially available HT-Flash memory modules made by Texas Instruments (SM28VLT32-HT) and preliminary results of 3 commercial solid tantalum capacitors. Flash evaluation boards were modified for high temperature application and read, write and erase functionality were tracked as well as prolonged data retention at various temperatures well beyond datasheet specifications.1Licence not specifiedover 2 years ago
- Final Report describing regional signature detection for blind and traditional play fairways as part of Phase I of New Mexico Play Fairway Analysis. This project seeks to reduce exploration risk and identify new prospective targets using available geologic, geochemical, and geophysical data sets. Although this project focuses on southwestern New Mexico, the techniques that were developed during this project are widely applicable elsewhere, particularly in arid regions.1Licence not specifiedover 2 years ago
- All datasets and products specific to the Carson Sink Basin. Includes a packed ArcMap (.mpk), individually zipped shapefiles, and a file geodatabase for the Carson Sink area; a GeoSoft Oasis montaj project containing GM-SYS 2D gravity profiles along the trace of our seismic reflection lines; a 3D model in EarthVision; spreadsheet of links to published maps; and spreadsheets of well data.1Licence not specifiedover 2 years ago
- This submission contains geospatial (GIS) data on water table gradient and depth, subcrop gravity and magnetic, propsectivity, heat flow, physiographic, boron and BHT for the Southwest New Mexico Geothermal Play Fairway Analysis by LANL Earth & Environmental Sciences. GIS data is in ArcGIS map package format.1Licence not specifiedover 2 years ago
- This is a map package that is used to show the wells in New Mexico that may be available for geochemical sampling.1Licence not specifiedover 2 years ago
- These are map packages used to visualize geochemical particle-tracking analysis results in ArcGIS. It includes individual map packages for several regions of New Mexico including: Acoma, Rincon, Gila, Las Cruces, Socorro and Truth or Consequences.1Licence not specifiedover 2 years ago
- This dataset contains a variety of data about the Fort Bliss geothermal area, part of the southern portion of the Tularosa Basin, New Mexico. The dataset contains schematic models for the McGregor Geothermal System, a shallow temperature survey of the Fort Bliss geothermal area. The dataset also contains Century OH logs, a full temperature profile, and complete logs from well RMI 56-5, including resistivity and porosity data, drill logs with drill rate, depth, lithology, mineralogy, fractures, temperature, pit total, gases, and descriptions among other measurements as well as CDL, CNL, DIL, GR Caliper and Temperature files. A shallow (2 meter depth) temperature survey of the Fort Bliss geothermal area with 63 data points is also included. Two cross sections through the Fort Bliss area, also included, show well position and depth. The surface map included shows faults and well spatial distribution. Inferred and observed fault distributions from gravity surveys around the Fort Bliss geothermal area.1Licence not specifiedover 2 years ago
- This dataset conforms to the Tier 3 Content Model for Geologic Reservoirs Version 1.0. It contains the known hydrocarbon reservoirs within the study area of the Geothermal Play Fairway Analysis for the Appalachian Basin (GPFA-AB) as part of Phase 1, Natural Reservoirs Quality Analysis. The final values for Reservoir Productivity Index (RPI) and uncertainty (in terms of coefficient of variation, CV) are included. RPI is in units of liters per MegaPascal-second (L/MPa-s), quantified using permeability, thickness of formation, and depth. A higher RPI is more optimal. Coefficient of Variation (CV) is the ratio of the standard deviation to the mean RPI for each reservoir. A lower CV is more optimal. Details on these metrics can be found in the Reservoirs_Methodology_Memo.pdf uploaded to the Geothermal Data Repository Node of the NGDS in October of 2015.1Licence not specifiedover 2 years ago
- For the New Mexico Play fairway Analysis project, gamma ray geophysical well logs from oil wells penetrating the Proterozoic basement in southwestern New Mexico were digitized. Only the portion of the log in the basement was digitized. The gamma ray logs are converted to heat production using the equation (Bucker and Rybach, 1996) : A[microW/m3] = 0.0158 (Gamma Ray [API] - 0.8).1Licence not specifiedover 2 years ago
- The files included in this submission contain all data pertinent to the methods and results of this task's output, which is a cohesive multi-state map of all known potential geothermal reservoirs in our region, ranked by their potential favorability. Favorability is quantified using a new metric, Reservoir Productivity Index, as explained in the Reservoirs Methodology Memo (included in zip file). Shapefile and images of the Reservoir Productivity and Reservoir Uncertainty are included as well (hover over file display names to see actual file names in bottom-left corner of screen).1Licence not specifiedover 2 years ago
- This submission includes three files from two sources. One file is derived from USGS data and includes a series of manipulations to evaluate only shallow wells with high estimated geothermal gradients. Two other files are springs and wells with discharge temperatures above 30 deg C from the NMBGMR Aquifer Mapping database1Licence not specifiedover 2 years ago
- Compilation of boron, lithium, bromine, and silica data from wells and springs throughout New Mexico from a wide variety of sources. The chalcedony geothermometry calculation is included in this file.1Licence not specifiedover 2 years ago
- Rock formation top picks from oil wells from southwestern New Mexico from scout cards and other sources. There are differing formation tops interpretations for some wells, so for those wells duplicate formation top data are presented in this file.1Licence not specifiedover 2 years ago
- This is an updated and simplified version of the New Mexico heat flow data already on the NGDS that was used for Play Fairway analysis.1Licence not specifiedover 2 years ago
- This file contains a compilation of BHT data from oil wells in southwestern New Mexico. Surface temperature is calculated using the collar elevation. An estimate of geothermal gradient is calculated using the estimated surface temperature and the uncorrected BHT data.1Licence not specifiedover 2 years ago
- Global Positioning System (GPS) time series from the National Science Foundation (NSF) Earthscope's Plate Boundary Observatory (PBO) and Central Washington University's Pacific Northwest Geodetic Array (PANGA). GPS station velocities were used to infer strain rates using the "splines in tension" method. Strain rates were derived separately for subduction zone locking at depth and block rotation near the surface within crustal block boundaries.1Licence not specifiedover 2 years ago
- Matlab scripts and functions and data used to build Poly3D models and create permeability potential GIS layers for 1) Mount St. Helens seismic zone, 2) Wind River Valley, and 3) Mount Baker geothermal prospect areas located in Washington state.1Licence not specifiedover 2 years ago
- Aeromagnetic data was collected over the Indian Wells Valley, CA in November 1994. It consisted of 9,033 line-kilometers covering ~4,150 square kilometers, flown at a 250 meter drape with principal line spacing of 0.54 kilometers and 10% cross-lines. The principal orientation is N65E.1Licence not specifiedover 2 years ago
- Custom MATLAB and custom GMT scripts for Hawaii Play Fairway Analysis modeling.1Licence not specifiedover 2 years ago
- Gravity model for the state of Hawaii. Data is from the following source: Flinders, A.F., Ito, G., Garcia, M.O., Sinton, J.M., Kauahikaua, J.P., and Taylor, B., 2013, Intrusive dike complexes, cumulate cores, and the extrusive growth of Hawaiian volcanoes: Geophysical Research Letters, v. 40, p. 3367-3373, doi:10.1002/grl.50633.1Licence not specifiedover 2 years ago
- National Park Service boundaries for the state of Hawaii.1Licence not specifiedover 2 years ago
- Conservation district subzones for the state of Hawaii.1Licence not specifiedover 2 years ago
- Land use district boundaries for the State of Hawaii.1Licence not specifiedover 2 years ago
- Compilation of Hawaiian place names indicative of heat. Place names are from the following references: Pukui, M.K., and S.H. Elbert, 1976, Place Names of Hawaii, University of Hawaii Press, Honolulu, HI 96822, 289 pp. ; Bier, J. A., 2009, Map of Hawaii, The Big Island, Eighth Edition, University of Hawaii Press, Honolulu, HI 96822, 1 sheet.; and Reeve, R., 1993, Kahoolawe Place Names, Consultant Report No. 16, Kahoolawe Island Conveyance Commission, 259 pp.1Licence not specifiedover 2 years ago
- Probability grid of Hawaii Play Fairway Analysis results. This analysis was aimed at assessing the geothermal resource potential throughout Hawaii.1Licence not specifiedover 2 years ago
- This data submission is link to a user reference guide for the SOLTHERM thermodynamic database maintained by the University of Oregon. The data at this link are not 'data results' from sampling. These data are derived from SOLTHERM as a reference for the user, showing balanced reactions and equilibrium constants log K(T,P) along the liquid-vapor saturation curve only, up to 350 degrees C, for aqueous species and minerals including REE, and gases. These data are more easily read by the user than the those in the SOLTHERM thermodynamic database.1Licence not specifiedover 2 years ago
- This data submission is a link to a thermodynamic database maintained by the University of Oregon. The data at this link are not 'data results' from sampling. The data at this link comprise a thermodynamic database for aqueous species, minerals, and gases, including data for stoichiometry, equilibrium constants log K(T,P), aqueous activity coefficients, fugacity coefficients, and water enthalpy. These data are derived from SOLTHERM as a reference for the user, showing balanced reactions and equilibrium constants log K(T,P) along the liquid-vapor saturation curve only, up to 350 degrees C, for aqueous species and minerals including REE, and gases. These data include REE aqueous species and minerals. These data are used by programs SOLVEQ-XPT, CHIM-XPT, and GEOCAL-XPT.1Licence not specifiedover 2 years ago
- Compilation of rare earth element and associated major and minor dissolved constituent analytical data for USA geothermal fields and global seafloor hydrothermal vents. Data is in original units. Reference to and use of this data should be attributed to the original authors and publications according to the provisions outlined therein.1Licence not specifiedover 2 years ago
- Outline of Hawaiian islands (Kauai, Oahu, Molokai, Kahoolawe, Lanai, Maui, Hawaii) generated from the Geologic Map of the State of Hawaii published by the USGS in 2007.1Licence not specifiedover 2 years ago
- GPS-derived Horizontal Velocities on the Hawaii island, provided by James Foster of the Pacific GPS Facility.1Licence not specifiedover 2 years ago
- Groundwater flow model for West Maui. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii - Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014. Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report - Volume V - Island of Maui Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.1Licence not specifiedover 2 years ago
- Groundwater flow model for Kauai. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii - Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014. Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report - Volume IV - Island of Kauai Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2015.1Licence not specifiedover 2 years ago
- Groundwater flow model for East Maui. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii - Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report - Volume V - Island of Maui Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.1Licence not specifiedover 2 years ago
- Groundwater flow model for the island of Oahu. Data is from the following sources: Rotzoll, K., A.I. El-Kadi. 2007. Numerical Ground-Water Flow Simulation for Red Hill Fuel Storage Facilities, NAVFAC Pacific, Oahu, Hawaii - Prepared TEC, Inc. Water Resources Research Center, University of Hawaii, Honolulu.; Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report - Volume VII - Island of Oahu Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.; and Whittier, R. and A.I. El-Kadi. 2009. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems - Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. December 2009.1Licence not specifiedover 2 years ago
- Groundwater flow model for Hawaii Island. Data is from the following sources: Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report - Volume II - Island of Hawaii Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008; and Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii - Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.1Licence not specifiedover 2 years ago
- Rifts mapped through reviewing the location of dikes and vents on the USGS 2007 Geologic Map of the State of Hawaii, as well as our assessment of topography, and, to a small extent, gravity data. Data is in shapefile format.1Licence not specifiedover 2 years ago
- Faults combined from USGS 2007 Geologic Map of the State of Hawaii and the USGS Quaternary Fault and Fold database. This data is in shapefile format.1Licence not specifiedover 2 years ago
- This file contains silica precipitation and lithium sorption data from the project. The silica removal data is corrected from the previous submission. The previous submission did not take into account the limit of detection of the ICP-MS procedure.1Licence not specifiedover 2 years ago
- Recharge data for the islands of Kauai, Lanai and Molokai in shapefile format. These data are from the following sources: Whittier, R.B and A.I. El-Kadi. 2014. Human Health and Environmental Risk Ranking of On-Site Sewage Disposal systems for the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii - Final, Prepared for Hawaii Dept. of Health, Safe Drinking Water Branch by the University of Hawaii, Dept. of Geology and Geophysics. (for Kauai, Lanai, Molokai). Shade, P.J., 1995, Water Budget for the Island of Kauai, Hawaii, USGS Water-Resources Investigations Report 95-4128, 25 p. (for Kauai). Izuka, S.K. and D.S. Oki, 2002 Numerical simulation of ground-water withdrawals in the Southern Lihue Basin, Kauai, Hawaii, U.S. Geologic Survey Water-Resources Investigations Report 01-4200, 52 pgs. (for Kauai). Hardy, W.R., 1996, A Numerical Groundwater Model for the Island of Lanai, Hawaii - CWRM Report No., CWRM-1, Commission on Water Resources Management, Department of Natural Resources, State of Hawaii, Honolulu, HI. (for Lanai). Oki, D.S., 1997, Geohydrology and numerical Simulation of the Ground-Water Flow System of Molokai, Hawaii, USGS Water-Resources Investigations Report 97-4176, 62 p. (for Molokai).1Licence not specifiedover 2 years ago
- Recharge data for Hawaii Island in shapefile format. The data are from the following sources: Whittier, R.B and A.I. El-Kadi. 2014. Human Health and Environmental Risk Ranking of On-Site Sewage Disposal systems for the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii - Final, Prepared for Hawaii Dept. of Health, Safe Drinking Water Branch by the University of Hawaii, Dept. of Geology and Geophysics. Oki, D. S. 1999. Geohydrology and Numerical Simulation of the Ground-Water Flow System of Kona, Island of Hawaii. U.S. Water-Resources Investigation Report: 99-4073. Oki, D. S. 2002. Reassessment of Ground-water Recharge and Simulated Ground-Water Availability for the Hawi Area of North Kohala, Hawaii. U.S. Geological Survey Water-Resources Investigation report 02-4006.1Licence not specifiedover 2 years ago
- HDF5 file containing phase, filtered phase, unwrapped range change and correlation data for the a TSX pair (Track 53) spanning time interval 12-23-2011 to 10-26-2012.1Licence not specifiedover 2 years ago
- 2015 USGS publication titled "Spatially distributed groundwater recharge for 2010 land cover estimated using a water-budget model for the island of O'ahu, Hawaii" which includes groundwater recharge data for Oahu.1Licence not specifiedover 2 years ago
- 2014 USGS publication titled "Spatially distributed groundwater recharge estimated using a water-budget model for the Island of Maui, Hawai'i, 1978-2007" which includes groundwater recharge data for Maui.1Licence not specifiedover 2 years ago
- Aqueous chemistry and well metadata from the USGS for Geothermal Wells in Hawaii1Licence not specifiedover 2 years ago
- .csv file consisting of the water well temperature and water table elevation for wells in the State of Hawaii. Data source, Hawaii Commission of Water Resources Management.1Licence not specifiedover 2 years ago
- CSV files with links to RINEX data for stations BRAD and BRDY for all days after those reported previous (i.e., since 21-JAN-2015) Links to websites that show the position time-series of both stations.1Licence not specifiedover 2 years ago
- Pierce, H.A., and Thomas, D.M., 2009, Magnetotelluric and audiomagnetotelluric groundwater survey along the Humu'ula portion of Saddle Road near and around the Pohakuloa Training Area, Hawaii: U.S. Geological Survey Open-File Report 2009, 1135, 160 p.1Licence not specifiedover 2 years ago
- This database contains information on faults and associated folds in the United States that are believed to be sources of M>6 earthquakes during the Quaternary (the past 1,600,000 years). Maps of these geologic structures are linked to detailed descriptions and references. Used to supplement faults mapped on the USGS 2007 Geologic Map of the State of Hawaii. Reference: U.S. Geological Survey, 2006, Quaternary fault and fold database for the United States, accessed 2015, from USGS web site: http//earthquakes.usgs.gov/regional/qfaults/.1Licence not specifiedover 2 years ago
- Compilation of geochemical data in ~850 groundwater wells across the State of Hawaii1Licence not specifiedover 2 years ago
- Geologic Map of the State of Hawaii published by the USGS in 2007. Includes downloadable GIS layers. Used in the Play Fairway project to obtain location of calderas, volcanic vents, dikes, and faults, as well as ages. To the fault layer we appended data from the USGS Quaternary fault and fold database.1Licence not specifiedover 2 years ago
- The Newberry Volcano EGS Demonstration in central Oregon, a 5 year project begun in 2010, tests recent technological advances designed to reduce the cost of power generated by EGS in a hot, dry well (NWG 55-29) drilled in 2008. First, the stimulation pumps used were designed to run for weeks and deliver large volumes of water at moderate well-head pressure. Second, to stimulate multiple zones, AltaRock developed thermo-degradable zonal isolation materials (TZIMs) to seal off fractures in a geothermal well to stimulate secondary and tertiary fracture zones. The TZIMs degrade within weeks, resulting in an optimized injection/ production profile of the entire well. Third, the project followed a project-specific Induced Seismicity Mitigation Plan (ISMP) to evaluate, monitor for, and mitigate felt induced seismicity. An initial stimulation was conducted in 2012 and continued for 7 weeks, with over 41,000 m3 of water injected. Further analysis indicated a shallow casing leak and an unstable formation in the open hole. The well was repaired with a shallow casing tieback and perforated liner in the open hole and re-stimulated in 2014. The second stimulation started September 23rd, 2014 and continued for 3 weeks with over 9,500 m3 of water injected. The well was treated with several batches of newly tested TZIM diverter materials and a newly designed Diverter Injection Vessel Assembly (DIVA), which was the main modification to the original injection system design used in 2012. A second round of stimulation that included two perforation shots and additional batches of TZIM was conducted on November 11th, 2014 for 9 days with an additional 4,000 m3 of water injected. The stimulations resulted in a 3-4 fold increase in injectivity, and PTS data indicates partial blocking and creation of flow zones near the bottom of the well. This submission includes all of the files and reports associated with the stimulation, pressure testing, and monitoring included in the scope of the project.1Licence not specifiedover 2 years ago
- Raw magnetotelluric (MT) data covering the geothermal system at Raft River, Idaho. The data was acquired by Quantec Geoscience. This is a zipped file containing .edi raw MT data files.1Licence not specifiedover 2 years ago
- Results for laser ablation measurement of rare earth elements and electron microprobe analysis of major elements in hydrothermal epidote. Laser ablation measurements were completed using an Agilent 7700 quadrupole ICP-MS coupled with 193nm Photon Instruments Excimer laser.1Licence not specifiedover 2 years ago
- Results for fluid rare earth element analyses from Reykjanes wells RN-12 and RN-19. The data have not been corrected for flashing. Samples pre-concentrated using chelating resin with IDA functional group (InertSep ME-1). Analyzed using an element magnetic sector ICP-MS.1Licence not specifiedover 2 years ago
- Batch tests of cross-linked lithium and manganese imprinted polymers of variable composition to assess their ability to extract lithium and manganese from synthetic brines at T=45 deg C .1Licence not specifiedover 2 years ago
- These data summarize adsorption experiments conducted with Gd in 0.5 M NaCl. Results represent preliminary, proof-of-concept data utilizing fine-powder silica gel as the adsorbent support. Future testing will focus on larger, application-appropriate beads.1Licence not specifiedover 2 years ago
- The data provided in this upload is summary data from its Demonstration Plant operation at the geothermal power production plants in the Imperial Valley. The data provided is averaged data for the Elmore Plant and the Featherstone Plant. See average brine composition tab for submitted compositional data. Included is both temperature and analytical data (ICP_OES). Provided is the feed to the Simbol Process, post brine treatment and post lithium extraction.1Licence not specifiedover 2 years ago
- Analyzed DTS datasets from active heat injection experiments in Guelph, ON Canada is included. A .pdf file of images including borehole temperature distributions, temperature difference distributions, temperature profiles, and flow interpretations is included as the primary analyzed dataset. Analyzed data used to create the .pdf images are included as a matlab data file that contains the following 5 types of data: 1) Borehole Temperature (matrix of temperature data collected in the borehole), 2) Borehole Temperature Difference (matrix of temperature difference above ambient for each test), 3) Borehole Time (time in both min and sec since the start of a DTS test), 4) Borehole Depth (channel depth locations for the DTS measurements), 5) Temperature Profiles (ambient, active, active off early time, active off late time, and injection).1Licence not specifiedover 2 years ago
- Daily position time-series of GPS station BRDY. Format is indicated on first line of file.1Licence not specifiedover 2 years ago
- This submission contains mesh information, nodal coordinates, connectivity data, and list of query points for the build FEM configuration.1Licence not specifiedover 2 years ago
- Daily position time-series of GPS station BRAD. Format is indicated on first line of file.1Licence not specifiedover 2 years ago
- These files are ambient noise correlation (ANC) functions calculated for 11 days of continuous seismic data recorded by the Lawrence Berkeley network in the Brady geothermal field. These are SAC formatted seismic waveforms. The stations included are BPB04, BPB05, BPB07, BPB08, BPRT1, BPRT2, BPRT3, BPRT5, BRB10, BRP01, BRP02, BRP03, BRP04, BPR06, and BRP09 The original data were cut into hour long traces and processed by differentiating, removing the mean, removing the trend, applying a 1% taper, whitening, removing the mean and trend again, and converting to single bit traces. The data were then correlated with those from other stations and stacked. The resulting files were then named according to the convention: STA1.STA2.CHAN1_CHAN2.NHOURS.stacked.sac The days included are from records during 2013 (julian days, 200,220-229). The ANC correlations were calculated on the raw data traces (without instrument corrections applied) to assess the quality of the signal as a function of frequency throughout the network. The data were recorded at 500 Hz. We observe high quality signals 30 Hz on all traces, and measurable signal up to 80 Hz on a subset of the traces.1Licence not specifiedover 2 years ago
- Hypocenters of local microearthquakes and 3D P- and S-velocity models computed by simultaneous inversion of arrival times recorded by the Brady seismic network Nov 2010-Mar 2015.1Licence not specifiedover 2 years ago
- In September 2013, an experiment using Distributed Acoustic Sensing (DAS) was conducted at Garner Valley, a test site of the University of California Santa Barbara (Lancelle et al., 2014). This submission lists all file names from Distributed Acoustic Sensing (DAS) data collected as part of PoroTomo Subtask 3.2. These file names represent data that is sampled at 1000 samples per second in segy format. The data is currently stored at University of Wisconsin Madison.1Licence not specifiedover 2 years ago
- Data here has been "pre-processed" and "analyzed" from the raw data submitted to the GDR previously (raw data files found at http://gdr.openei.org/submissions/479. doi:10.15121/1176944 after 30 September 2017). First, we submit .mat files which are the "pre-processed" data (must have MATLAB software to use). Secondly, the csv files contain submitted data in its final analyzed form before being used for inversion. Specifically, we have fourier coefficients obtained from Fast Fourier Transform Algorithms.1Licence not specifiedover 2 years ago
- Well lithologies and corresponding descriptions exported from the 3D Leapfrog geologic model.1Licence not specifiedover 2 years ago
- These histograms represent our calibration of conductance of a volcanic geothermal field (with a clay cap) and the observed steam flow rates. Darajat is a vapor geothermal field located in West Java, Indonesia. First production from the field was started in 1994 and additional capacity was added in 2000 and 2007 to bring the total production capacity to 271 MW from three power plants. Please refer to Rejeki et al. (2010) for geologic and modeling background. The steam flow measurements are the average production over one year for 27 different wells. Four of these wells were drilled near to or outside of the geothermal field and are characterized by production rates of < 5kg/s. Rejeki, S., Rohrs, D., Nordquist, G., and Fitriyanto, A., 2010, Geologic Conceptual Model Update of the Darajat Geothermal Field , Indonesia, in Proceedings World Geothermal Congress 2010, p. 25-29. Further details will be contained in the following paper to be published in the fall of 2015: Trainor-Guitton, Hoversten,Nordquist, Intani, Value of information analysis using geothermal field data: accounting for multiple interpretations & determining new drilling locations. SEG Abstracts 2015.1Licence not specifiedover 2 years ago
- Abstract: Davenport Newberry (Davenport) has completed 8 years of exploration for geothermal energy on Newberry Volcano in central Oregon. Two deep exploration test wells were drilled by Davenport on the west flank of the volcano, one intersected a hydrothermal system; the other intersected isolated fractures with no hydrothermal interconnection. Both holes have bottom-hole temperatures near or above 315 deg C (600 deg F). Subsequent to deep test drilling an expanded exploration and evaluation program was initiated. These efforts have included reprocessing existing data, executing multiple geological, geophysical, geochemical programs, deep exploration test well drilling and shallow well drilling. The efforts over the last three years have been made possible through the DOE's facilitation of innovative geothermal exploration techniques. The combined results of the last 8 years have led to a better understanding of the history and complexity of Newberry Volcano and improved the design and interpretation of geophysical exploration techniques with regard to blind geothermal resources in volcanic terrain.1Licence not specifiedover 2 years ago
- Chemical analyses of thermal and cold ground waters from Surprise Valley, California, compiled from publicly available sources, in collaboration with UC Davis.1Licence not specifiedover 2 years ago
- Links and instructions for downloading Brady's triggered seismic network waveform data from the Northern California Earthquake Data Center (NCEDC). Data from 7/5/10-1/18/13 presently available.1Licence not specifiedover 2 years ago
- List of TerraSAR-X/TanDEM-X images acquired between 2015-01-01 and 2015-03-31, and archived at https://winsar.unavco.org. See file "BHS InSAR Data with URLs.csv" for individual links. NOTE: The user must create an account in order to access the data (See "Instructions for Creating an Account" below).1Licence not specifiedover 2 years ago
- In September 2013, an experiment using Distributed Acoustic Sensing (DAS) was conducted at Garner Valley, a test site of the University of California Santa Barbara (Lancelle et al., 2014). This submission includes one 45 kN shear shaker (called "large shaker" on the basemap) test for three different measurement systems. The shaker swept from a rest, up to 10 Hz, and back down to a rest over 60 seconds. Lancelle, C., N. Lord, H. Wang, D. Fratta, R. Nigbor, A. Chalari, R. Karaulanov, J. Baldwin, and E. Castongia (2014), Directivity and Sensitivity of Fiber-Optic Cable Measuring Ground Motion using a Distributed Acoustic Sensing Array (abstract # NS31C-3935), AGU Fall Meeting.1Licence not specifiedover 2 years ago
- In September 2013, an experiment using Distributed Acoustic Sensing (DAS) was conducted at Garner Valley, a test site of the University of California Santa Barbara (Lancelle et al., 2014). This submission includes noise cross-correlation functions (NCF) . Each file includes a NCF between two channels. The name of each channel denotes the distance in meters from starting point of the fiber-optic cable. The NCF is a time series data. The column 1 and 2 are time in seconds and dimensionless amplitude (cross correlation coefficient) respectively. Lancelle, C., N. Lord, H. Wang, D. Fratta, R. Nigbor, A. Chalari, R. Karaulanov, J. Baldwin, and E. Castongia (2014), Directivity and Sensitivity of Fiber-Optic Cable Measuring Ground Motion using a Distributed Acoustic Sensing Array (abstract # NS31C-3935), AGU Fall Meeting. https://agu.confex.com/agu/fm14/webprogram/Session1938.html The e-poster is available at: https://agu.confex.com/data/handout/agu/fm14/Paper_19828_handout_696_0.pdf1Licence not specifiedover 2 years ago
- Pressure data from a phreatic aquifer was collected in the summer of 2013 during Multi-frequency Oscillatory Hydraulic Tomography pumping tests. All tests were performed at the Boise Hydrogeophysical Research Site. The data will be inverted using a fast steady-periodic adjoint-based inverse code.1Licence not specifiedover 2 years ago
- Unprocessed active distributed temperature sensing (DTS) data from 3 boreholes in the Guelph, ON Canada region. Data from borehole 1 was collected during a fluid injection while data from boreholes 2 and 3 were collected under natural gradient conditions in a lined borehole. The column labels/headers (in the first row) define the time since start of measurement in seconds and the row labels/headers (in the first column) are the object IDs that are defined in the metadata. Each object ID is a sampling location whose exact location is defined in the metadata file. Data in each cell are temperature in Celsius at time and sampling location as defined above.1Licence not specifiedover 2 years ago
- GPS RINEX Files and Time-Series FTP Locations1Licence not specifiedover 2 years ago
- Static Pressure and Temperature Log for Brady monitor well SP-2. This data was taken from Well SP-2 which is part of the Brady Hot Springs Geothermal Site. The data contains pressure and temperature vs depth data for RIH (run in hole) Static conditions and POOH (pull out of hole) Static conditions. The data was recorded on 2/18/2015 and measurements reach a depth of 4392 feet.1Licence not specifiedover 2 years ago
- Project: High Temperature Chemical Sensing Tool for Distributed Mapping of Fracture Flow in EGS. Preliminary pH and reference electrode test results.1Licence not specifiedover 2 years ago
- This submission contains an ASCII text file of seismic velocities derived from ambient noise cross-correlation used to create a model of seismic velocity as a 1-D function of depth in addition to a quarterly report describing the creation and use of the model. Model uses 28 Green's functions filtered between 4-10 Hz for Vp, Vs, and Qs were calculated. 1D model estimated for each path. The final model is a median of the individual models. Resolution is best for the top 1 km. Poorly constrained with increasing depth.1Licence not specifiedover 2 years ago
- Attributes of synthetic aperture radar (SAR) data acquired by TerraSAR-X and TanDEM-X satellite missions and archived at WInSAR facility.1Licence not specifiedover 2 years ago
- A series of oscillatory pumping tests were performed at the BHRS. The data collected from these wells will be used to tomographically image the shallow subsurface. This excel file only contains well coordinates for all wells at the Boise site.1Licence not specifiedover 2 years ago
- Brady's geothermal field seismic network station locations and dates of operation.1Licence not specifiedover 2 years ago
- Metadata for active distributed temperature survey (DTS) experiments at Guelph, Ontario Canada. This data that this metadata refers to was taken as part of the PoroTomo project. The metadata includes information about status, location, elevation, units, and other metadata.1Licence not specifiedover 2 years ago
- CSV files with links to individual GPS RINEX files.1Licence not specifiedover 2 years ago
- Daily position time-series for GPS station BRAD and BRDY in the NA12 reference frame.1Licence not specifiedover 2 years ago
- Metadata for the data collected at the NEES@UCSB Garner Valley Downhole Array field site on September 10-12, 2013 as part of the larger PoroTomo project.1Licence not specifiedover 2 years ago
- According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel-based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.1Licence not specifiedover 2 years ago
- This file contains a list of relevant references on the Biot theory (forward and inverse approaches), the double-porosity and dual-permeability theory, and seismic wave propagation in fracture porous media, in RIS format, to approach seismic monitoring in a complex fractured porous medium such as Brady's Geothermal Field.1Licence not specifiedover 2 years ago
- This file contains a list of relevant references on value of information (VOI) in RIS format. VOI provides a quantitative analysis to evaluate the outcome of the combined technologies (seismology, hydrology, geodesy) used to monitor Brady's Geothermal Field.1Licence not specifiedover 2 years ago
- NREL and the Colorado School of Mines (SURGE) conducted research in FY14 to identify petroleum drilling and completion practices (methods and technologies) that can be transferred to geothermal drilling and completion, to provide the geothermal industry with more effective, lower cost and lower risk methods. The submitted resource is the FY14 project final report.1Licence not specifiedover 2 years ago
- This report presents the geologic framework critical in understanding spring discharge and the hydrogeology in Black Canyon directly south of Lake Mead below Hoover Dam, Nevada and Arizona. Most of the springs are thermal 2 Geologic Framework of Thermal Springs, Black Canyon, Nevada and Arizona with temperatures as much as 45 degrees C. This study is part of a hydrogeologic and geochemical study of the Black Canyon thermal springs by the U.S. Geological Survey, funded by the National Park Service and National Cooperative Geologic Mapping Program of the U.S. Geological Survey. The study consisted of (1) compilation of existing geologic mapping, augmented by new field geologic mapping and geochronology (Felger and others, 2014), (2) collection and analysis of structural data adjacent to the springs of interest (appendix 1; Anderson and Beard, 2011; Beard and others, 2011a), and (3) construction of regional cross sections (pl. 1). The most significant results identify faults, fracture zones, and rock characteristics that influence the hydrogeology of Black Canyon. Additional results include refinement of the volcanic stratigraphy based on field mapping and new geochronology. This report will be integrated into a companion hydrogeologic report that includes new geochemical and spring flow data that describes groundwater components of Black Canyon thermal springs (M. Moran, written commun, 2013).1Licence not specifiedover 2 years ago
- Borehole W1 is a NQ core hole drilled at our test site in Socorro. The rock is rhyolite. Borehole W1 which was used to test gas-gas explosive mixtures is 55 feet deep with casing (pinkish in the drawing) set to 35 feet. The model is a representation of the borehole and the holes we cored around the central borehole after the test. The brown colored core holes showed dye when we filled W1 with water and slightly pressurized it. This indicates there was some path between W1 and the colored core hole. The core holes are shown to their TD in the drawing. The green plane is a fracture plane which we believe is the result of the explosions of the gas mixture in W1. Data resource is a 2D .pdf Solid Works Drawing of borehole W1.1Licence not specifiedover 2 years ago
- Images from a 3D seismic reflection survey across a geothermal area are shown. Images of coherency and acoustic impedance are shown. Well tracks and MEQ location are overlain.1Licence not specifiedover 2 years ago
- EGS field projects have not sustained production at rates greater than 1/2 of what is needed for economic viability. The primary limitation that makes commercial EGS infeasible is our current inability to cost-effectively create high-permeability reservoirs from impermeable, igneous rock within the 3,000-10,000 ft depth range. Our goal is to develop a novel fracturing fluid technology that maximizes reservoir permeability while reducing stimulation cost and environmental impact. Laboratory equipment development to advance laboratory characterization/monitoring is also a priority of this project to study and optimize the physicochemical properties of these fracturing fluids in a range of reservoir conditions. Barrier G is the primarily intended GTO barrier to be addressed as well as support addressing barriers D, E and I.1Licence not specifiedover 2 years ago
- The objective of this suite of experiments was to develop a useful kinetic dissolution expression for illite applicable over an expanded range of solution pH and temperature conditions representative of subsurface conditions in natural and/or engineered geothermal reservoirs. Using our new data, the resulting rate equation is dependent on both pH and temperature and utilizes two specific dissolution mechanisms (a "neutral" and a "basic" mechanism). The form of this rate equation should be easily incorporated into most existing reactive transport codes for to predict rock-water interactions in EGS shear zones.1Licence not specifiedover 2 years ago
- Binary Engineering production data. Used to demonstrate the techno-economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant.1Licence not specifiedover 2 years ago
- Binary costs and man-hour data supporting the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant.1Licence not specifiedover 2 years ago
- DOE summary report of data, operations, outages, and curtailments in order to support the techno-economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant.1Licence not specifiedover 2 years ago
- Binary Engineering production data for August 2014. Used to demonstrate the techno-economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant.1Licence not specifiedover 2 years ago
- Binary Costs and man-hour data supporting the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant.1Licence not specifiedover 2 years ago
- Generation data from August associated with the binary unit at Dixie Valley. Includes summary of data, operations, outages, and curtailments in order to support the techno-economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the plant.1Licence not specifiedover 2 years ago
- This submission contains links to Geothermal Areas on OpenEI that were completed as part of an effort to gather clean, unbiased information on which to build geothermal drilling prospects. The specific areas that were part of this focused effort, or *case studies*, are linked individually, and also available for download as a table in CSV format. The Geothermal Areas exist live on OpenEI and are constantly evolving with updated information. Snapshots of both the specific case study areas and of all geothermal areas on OpenEI, from the time of submission, have been included in CSV format. For the most up-to-date information, please use the provided **All Geothermal Areas** link to view these on OpenEI. This dataset also includes a link to the Geothermal Exploration Overview page on OpenEI, which provides exhaustive detail on the activities cataloged for these case studies and their references, as well as the technologies employed in each geothermal area.1Licence not specifiedover 2 years ago
- Operational performance requirements are needed to support development of specifications for downhole motor power sections to be used for drilling hard rock during geothermal wellbore construction. Theoretical torque specifications are derived based upon a widely-accepted rock-reduction model in the literature using representative properties for typical rock formations. The derived values correspond to optimum motor performance for rock reduction at minimum specific energy and form a set of minimum requirements on output torque and power for downhole motors. Actual values should be increased to account for factors such as increased hydrostatic pressure at depth, bit wear, heterogeneous rock, and non-ideal drilling conditions.1Licence not specifiedover 2 years ago
- Binary production Data. Used to demonstrate the techno-economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant.1Licence not specifiedover 2 years ago
- Dixie Valley Binary Costs reports. Includes cost and man-hour data supporting the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant.1Licence not specifiedover 2 years ago
- DOE Report Dixie Valley Binary project. Includes summary of data, operations, outages, and curtailments in order to support the techno-economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant.1Licence not specifiedover 2 years ago
- This entry contains raw data files from experiments performed on the Vulcan beamline at the Spallation Neutron Source at Oak Ridge National Laboratory using a pressure cell. Cylindrical granite and marble samples were subjected to confining pressures of either 0 psi or approximately 2500 psi and internal pressures of either 0 psi, 1500 psi or 2500 psi through a blind axial hole at the center of one end of the sample. The sample diameters were 1.5" and the sample lengths were 6". The blind hole was 0.25" in diameter and 3" deep. One set of experiments measured strains at points located circumferentially around the center of the sample with identical radii to determine if there was strain variability (this would not be expected for a homogeneous material based on the symmetry of loading). Another set of experiments measured load variation across the radius of the sample at a fixed axial and circumferential location. Raw neutron diffraction intensity files and experimental parameter descriptions are included.1Licence not specifiedover 2 years ago
- Fabricated SiC diodes are tested in the temperature range of 300 degrees C to 600 degrees C.1Licence not specifiedover 2 years ago
- Tantalum capacitors can provide much higher capacitance at high-temperatures than the ceramic capacitors. This study evaluates selected tantalum capacitors at high temperatures to determine their suitability for you in geothermal field. This data set contains results of the first test where three different types of capacitors were evaluated at 260C.1Licence not specifiedover 2 years ago
- The accompanying raw data is composslection. Each file is 3 columns and tab-delimited with the first column being the data address, the second column being the first byte of the data, and the third column being the second byte of the data.1Licence not specifiedover 2 years ago
- This paper describes the applications of the fractured continuum model to the different enhanced geothermal systems reservoir conditions. The capability of the fractured continuum model to generate fracture characteristics expected in enhanced geothermal systems reservoir environments are demonstrated for single and multiple sets of fractures. Fracture characteristics are defined by fracture strike, dip, spacing, and aperture. This paper demonstrates how the fractured continuum model can be extended to represent continuous fractured features, such as long fractures, and the conditions in which the fracture density varies within the different depth intervals. Simulations of heat transport using different fracture settings were compared with regard to their heat extraction effectiveness. The best heat extraction was obtained in the case when fractures were horizontal. A conventional heat extraction scheme with vertical wells was compared to an alternative scheme with horizontal wells. The heat extraction with the horizontal wells was significantly better than with the vertical wells when the injector was at the bottom.1Licence not specifiedover 2 years ago
- This data should be used with the daily drilling record and other data which can be obtained from the contact listed below.1Licence not specifiedover 2 years ago
- The aim of this study is to understand how commercially available elastomers perform under geothermal well-like conditions and make recommendations to the community based on these results. This poster highlights the mechanical performance of several elastomers (including EPDM, Viton A, Viton B, FFKM, and FEPM) after aging at elevated temperature, pressure, and in well brine and drilling solutions.1Licence not specifiedover 2 years ago
- Test report for detonation velocity measurements. A series of tests were conducted to determine reaction rate and general behavior of aluminum (AL) and magnesium (MG) powder mixtures (metalized explosives) with Bullseye double-base smokeless propellant. Given the indeterminate sensitivity and unknown potential behavior of the mixed material, mixing and subsequent charge placement was performed remotely. The test setup and results are summarized within this document.1Licence not specifiedover 2 years ago
- Bottom hole assembly (BHA) designs were assessed in field trials for their ability to achieve critical low inclination requirements, while simultaneously enabling high drill rates. Because angle has historically been controlled by reducing weight on bit (WOB), these are often competing priorities. The use of real time surveillance of mechanical specific energy (MSE) provided unique insights into the bit dysfunction that occurs with many practices used to control angle. These quantitative insights supported the development of BHA and operating practices that maintained low angle while also achieving major gains in drilling performance. The McGinness Hills field in Lander County Nevada is a geothermal operation with wells drilled in hard metamorphic and crystalline formations. Wellbore inclinations must be maintained below 2.0 degrees in the critical 20 inch interval in order to allow use of lineshaft pumps, which is challenging in the required hole sizes and rock hardness. Formation strengths are similar to petroleum operations in the Rockies and West Texas. Pendulum and packed-hole assemblies were tested, and straight motors and slick assemblies were used for corrections. Well build rates were assumed to be controlled by the three-point curvature in the lower assembly and stabilizer placement was modified to control this curvature. The effectiveness of the curvature control as WOB was increased was evaluated from inclination measurements. Real time MSE analysis was used to manage bit operating performance and to determine the root causes of bit dysfunction. The results demonstrated that packed-hole assemblies could be designed that controlled inclination while enabling 2-3 times higher WOB, and that the use of pendulum assemblies should be eliminated. Packed assemblies drilled 87% faster. The increased WOB resulted in higher drill rates, major reduction in whirl and extended bit life, which are equally important performance objectives in hard rock drilling. The use of MSE surveillance allowed the physical processes to be understood deterministically, so that the philosophical design principles can be applied in other petroleum and geothermal operations.1Licence not specifiedover 2 years ago
- This a report for the project "Mapping Fracture Network Creation with Microseismicity During EGS Demonstrations". Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key tool used to infer the subsurface fracture geometry. Traditional earthquake detection and location techniques are often employed to identify microearthquakes in geothermal regions. However, most commonly used algorithms may miss events if the seismic signal of an earthquake is small relative to the background noise level or if a microearthquake occurs within the coda of a larger event. Consequently, we have developed a set of algorithms that provide improved microearthquake detection. Our objective is to investigate the microseismicity at the DOE Newberry EGS site to better image the active regions of the underground fracture network during and immediately after the EGS stimulation. Detection of more microearthquakes during EGS stimulations will allow for better seismic delineation of the active regions of the underground fracture system. This improved knowledge of the reservoir network will improve our understanding of subsurface conditions, and allow improvement of the stimulation strategy that will optimize heat extraction and maximize economic return. This project is the FY14 continuation of FY13 AOP project 25728, which had its origins as the ARRA lab project AID 19981.1Licence not specifiedover 2 years ago
- Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 July to 31 July 2014.1Licence not specifiedover 2 years ago
- Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 June to 30 June 2014.1Licence not specifiedover 2 years ago
- This file contains additional data for this test (hydroshear test 3.2). In this test a sample of granite with a pre-cut (man made fracture) is confined, heated and differential stress is applied. The max temperature in this this system development test is 95C. More test details can be found on the spreadsheets.1Licence not specifiedover 2 years ago
- This data file is for test 2. In this test a sample of granite with a pre-cut (man made fracture) is confined, heated and differential stress is applied. The max temperature in this this system development test is 95C. More test details can be found on the spreadsheets--note that there are 2 spreadsheets1Licence not specifiedover 2 years ago
- This is the results of an initial setup-shakedon test in order to develop the plumbing system for this test design. a cylinder of granite with offset holes was jacketed and subjected to confining pressure and low temperature (85C) and pore water pressure. Flow through the sample was developed at different test stages.1Licence not specifiedover 2 years ago
- The article and accompanying spreadsheet represent the information posteriors derived from synthetic data of magnetotellurics (MT). These were used to calculate value of information of MT for geothermal exploration. Information posteriors describe how well MT was able to locate the "throat" of clay caps, which are indicative of hidden geothermal resources. This data is fully explained in the peer-reviewed publication: The value of spatial information for determining well placement: a geothermal example, written by Trainor-Guitton, W., Hoversten, G. M., Ramirez, A., Roberts, J., Juliusson, E., Key, K., and Mellors, R. and published on August 25th, 2014.1Licence not specifiedover 2 years ago
- Images of the Stripa Granite core before and after the fracture sustainability test. Photos of fracture faces of Stripa Granite core.1Licence not specifiedover 2 years ago
- There is an ongoing effort at Oak Ridge National Laboratory to develop a unique experimental capability for investigating flow through porous and fractured media using neutron imaging techniques. This capability is expected to support numerous areas of investigation associated with flow processes relevant to EGS including, but not limited to: experimental visualization and measurement of velocity profiles and other flow characteristics to better inform reduced-order modeling of flow through fractures; laboratory scale validation of flow models and simulators; and a 'real-time' tool for studying geochemical rock/fluid interactions by noninvasively measuring material effects such as precipitation and dissolution in EGS-representative conditions. Demonstrating the ability of the technique to generate useful quantitative data is the primary focus at this stage of the effort. Details of the experimental setup and neutron imaging technique will be discussed in this communication, including the description of a custom designed, high pressure, neutron scattering and imaging compatible triaxial flow cell.1Licence not specifiedover 2 years ago
- Understanding the relationship between stress state, strain state and fracture initiation and propagation is critical to the improvement of fracture simulation capability if it is to be used as a tool for guiding hydraulic fracturing operations. The development of fracture prediction tools is especially critical for geothermal applications such as EGS because the opportunities to build understanding empirically will be limited due to the high costs associated with field trials. There is a significant body of experimental work associated with hydraulic fracture investigation, but past efforts are typically hampered by an inability to accurately and comprehensively measure strains within the sample mass near critical regions of interest. This work aims to develop non-destructive neutron diffraction based strain measurement techniques that can be used to interrogate the internal volume of geological specimens subjected to tri-axial stress states resembling geothermal application conditions. Demonstrating the ability of the technique to generate useful quantitative data is the primary focus at this stage of the effort. Details of the experimental setup and diffraction technique will be presented in this communication, including the description of a custom designed high-pressure, neutron scattering1Licence not specifiedover 2 years ago
- This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.1Licence not specifiedover 2 years ago
- Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 May to 31 May 2014.1Licence not specifiedover 2 years ago
- Orders associated with binary unit. Includes cost and man-hour data supporting the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant.1Licence not specifiedover 2 years ago
- Generation data associated with binary unit. Used to demonstrate the techno-economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant. *Note - This data is incomplete. See link "Monthly Production Data September 2014" for a more complete data set.1Licence not specifiedover 2 years ago
- DOE Report for binary unit. Includes summary of data, operations, outages, and curtailments in order to support the techno-economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant.1Licence not specifiedover 2 years ago
- Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 April to 30 April 2014.1Licence not specifiedover 2 years ago
- Well completions are an integral part of providing safe, reliable and continuous access to underground resources such as oil, gas and geothermal resources. Completions are typically considered to be the final step of drilling engineering which includes processes such as setting casing, cementing, and perforating to reach the target formation. Completions provide the conduit from the resource to the surface. Although completions encompass a wide range of disciplines, several key factors ultimately determine the quality of the completion. One of those is cementing and centralizing casing within the wellbore. This white paper examines the current state of the art for centralizers in the context of well completions. The paper will include an introductory primer on well completions to provide the framework for the centralizer discussions. The types of centralizers currently available and how they are used will be discussed in addition to alternative centralizer techniques.1Licence not specifiedover 2 years ago
- Comprehensive catalogue of drill-hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. Plus, 13 cross-sections in Adobe Illustrator format.1Licence not specifiedover 2 years ago
- Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Mar to 31 Mar 2014.1Licence not specifiedover 2 years ago
- Generation Data for March, 2014. Used to demonstrate the techno-economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant. Data includes Brine Flow, Brine Return Temperature, Brine Supply Temperature, Generation Output, Net Generation, Parasitic Loss, and Dry Bulb Temperature.1Licence not specifiedover 2 years ago
- Services associated with Binary Unit. Costs have been stripped. Demonstrates the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant. Data for March 20141Licence not specifiedover 2 years ago
- Dixie Valley production data from March, 2014 - Summary report of data, operations, outages, and curtailments in order to support the techno-economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant.1Licence not specifiedover 2 years ago
- Files contain a summary of the production and injection data submitted by the geothermal operators to the Nevada Bureau of Mines and Geology over the period from 1985 thru 20091Licence not specifiedover 2 years ago
- This geologic map of the Wabuska Geothermal Area outlines the locations of quaternary deposits, late tertiary volcanic and sedimentary rocks, late tertiary intrusive rocks and veins, Oligocene ash-flow tuffs and sedimentary rocks, and Triassic sedimentary rocks. Suggested citation: Hinz, N. H., Ramelli, A. R., and Faults, J. E., 2013, Preliminary geologic map of the Wabuska quadrangle, Lyon County, Nevada: Nevada Bureau of Mines and Geology Open-File Report 13-8, scale 1:24,000.1Licence not specifiedover 2 years ago
- The data in this submission includes a geologic map of the Salt Wells Geothermal Area. The map is in pdf format. The map includes locations of quaternary deposits, tertiary volcanic rock, sedimentary deposits, and tertiary intrusions. The map legend and scale can be found on the map. This study was done by the University of Nevada in conjunction with the Nevada Bureau of Mines and Geology.1Licence not specifiedover 2 years ago
- Geologic Map of the Patua Geothermal Area. The map includes locations of quaternary deposits, quaternary lacustrine deposits, pliocene strata and other formations. The map is in PDF format. The map legend and scale can be found on the map. This study was done by the University of Nevada in conjunction with the Nevada Bureau of Mines and Geology.1Licence not specifiedover 2 years ago
- Preliminary geologic map, unit descriptions, and cross-sections of the Tuscarora geothermal area. The files within the zip are all in pdf format. The the two maps include rock and mineral deposits from different geologic time scales. Units, legend, and scales can be found on each map, and a description of the maps can be found in the "Preliminary Geologic Map of the Tuscarora Geothermal Area, Elko County, Nevada" document.1Licence not specifiedover 2 years ago
- Exploration of geothermal systems is commonly hampered by the risk of unsuccessful drilling. A major problem in selecting well sites is that the favorable settings of known systems are generally not adequately characterized. This is particularly important in amagmatic regions, where faults are the dominant control on geothermal fluids and obvious magmatic het sources are lacking...1Licence not specifiedover 2 years ago
- Detailed geologic mapping (1:24,000 scale), structural and geochemical analyses, and integration of available geophysical and well-field data were utilized to assess the structural controls of the Neal Hot Springs geothermal field in eastern Oregon. The geothermal field lies within the intersection of two regional grabens, the middle-late Miocene, north-trending, Oregon-Idaho graben and younger late Miocene to Holocene, northwest-trending, western Snake River Plain graben. It is marked by Neal Hot Springs, which effuse from opaline sinter mounds just north of Bully Creek. Production and injection wells, with temperatures up to 142 degrees C, intersect the Neal fault zone at depths of 680-1900 m and subsidiary faults within a relay ramp or step-over within the fault zone. The stratigraphy at Neal correlates with four regional packages. Basement rocks, discovered in one well, are granite, tentatively correlated with Jurassic Olds Ferry-Izee terrane. Nonconformably above is a thick package of middle Miocene Columbia River Basalt Group lavas, regionally known as the basalt of Malheur Gorge. Conformably above are middle to late Miocene Oregon-Idaho graben lavas, volcaniclastics, fluvial and lacustrine rocks. Overlying are the youngest rocks at Neal, which are late Miocene to Pliocene, western Snake River Plain lacustrine, fluvial, and volcaniclastic rocks. The structural framework at Neal is characterized by northerly to northweststriking normal faults, including the geothermally related Neal fault zone. Stress inversion of kinematic data reveal an extensional stress regime, including an interpreted younger, southwest-trending (~243 degrees), least principal stress and an older, west-trending (~265 degrees) least principal stress. The geothermal field is bounded on the east by the Neal fault, a major, westdipping, north-northwest-striking, steeply dipping normal to oblique-slip fault, along which geothermal fluids ascend, and on the west by the concealed north-northweststriking, west-dipping Sugarloaf Butte fault. The Neal fault zone can be modeled into two structural settings: an interpreted older, left-stepping, normal-slip fault zone and a younger, oblique sinistral-normal zone, suggested by the earlier west-trending and later southwest-trending extensional stress regimes. Recent sinistral-normal displacement may have generated a small pull-apart basin in the Neal area and facilitated development of the geothermal system. 'Hard-linkage' between the Neal and Sugarloaf Butte faults occurs through concealed, west-northwest-striking faults, including the Cottonwood Creek subvertical fault, along which lateral fluid-flow is likely. An inferred northplunging fault intersection at the Neal Hot Springs likely controls the location of the hot springs and sinter terraces. Young structural features are evident at Neal. The Neal fault zone cuts Quaternary fans and late Miocene lower and upper Bully Creek Formation sedimentary rocks. In addition, the geothermal field is 4 km west of the active, north- to northweststriking, normal-slip Cottonwood Mountain fault. Furthermore, the field is within several kilometers of recently detected seismicity. This, coupled with its active hot springs (~90 degrees C), opaline sinter mounds, and geothermal fluid flow, suggest that the geothermal field lies within an active (Quaternary), southward-terminating, left-stepping fault zone, which locally acts as a pull-apart basin with sinistral- and normal-slip components.1Licence not specifiedover 2 years ago
- Detailed geologic mapping, structural analysis, and well data have been integrated to elucidate the stratigraphic framework and structural setting of the Tuscarora geothermal area. Tuscarora is an amagmatic geothermal system that lies in the northern part of the Basin and Range province, ~15 km southeast of the Snake River Plain and ~90 km northwest of Elko, Nevada. The Tuscarora area is dominated by late Eocene to middle Miocene volcanic and sedimentary rocks, all overlying Paleozoic metasedimentary rocks. A geothermal power plant was constructed in 2011 and currently produces 18 MWe from an ~170 degrees C reservoir in metasedimentary rocks at a depth of ~1430 m. Analysis of drill core reveals that the subsurface geology is dominated to depths of ~700-1000 m by intracaldera deposits of the Eocene Big Cottonwood Canyon caldera, including blocks of basement-derived megabreccia. Furthermore, the Tertiary-Paleozoic nonconformity within the geothermal field has been recognized as the margin of this Eocene caldera. Structural relations combined with geochronologic data from previous studies indicate that Tuscarora has undergone extension since the late Eocene, with significant extension in the late Miocene-Pliocene to early Pleistocene. Kinematic analysis of fault slip data reveal an east-west-trending least principal paleostress direction, which probably reflects an earlier episode of Miocene extension. Two distinct structural settings at different scales appear to control the geothermal field. The regional structural setting is a 10-km wide complexly faulted left step or relay ramp in the west-dipping range-bounding Independence-Bull Run Mountains normal fault system. Geothermal activity occurs within the step-over where sets of east- and west-dipping normal faults overlap in a northerly trending accommodation zone. The distribution of hot wells and hydrothermal surface features, including boiling springs, fumaroles, and siliceous sinter, indicate that the geothermal system is restricted to the narrow (< 1 km) axial part of the accommodation zone, where permeability is maintained at depth around complex fault intersections. Shallow up-flow appears to be focused along several closely spaced steeply west-dipping north-northeast-striking normal faults within the axial part of the accommodation zone. These faults are favorably oriented for extension and fluid flow under the present-day northwest-trending regional extension direction indicated by previous studies of GPS geodetic data, earthquake focal mechanisms, and kinematic data from late Quaternary faults. The recognition of the axial part of an accommodation zone as a favorable structural setting for geothermal activity may be a useful exploration tool for development of drilling targets in extensional terranes, as well as for developing geologic models of known geothermal fields. Preliminary analysis of broad step-overs similar to Tuscarora reveals that geothermal activity occurs in a variety of subsidiary structural settings within these regions. In addition, the presence of several high-temperature systems in northeastern Nevada demonstrates the viability of electrical-grade geothermal activity in this region despite low present-day strain rates as indicated by GPS geodetic data. Geothermal exploration potential in northeastern Nevada may therefore be higher than previously recognized.1Licence not specifiedover 2 years ago
- We are conducting an inventory of structural settings of geothermal systems (>400 total) in the extensional to transtensional Great Basin region of the western USA. A system of NW-striking dextral faults known as the Walker Lane accommodates ~20% of the North American-Pacific plate motion in the western Great Basin and is intimately linked to N- to NNE-striking normal fault systems throughout the region. Overall, geothermal systems are concentrated in areas with the highest strain rates within or proximal to the eastern and western margins of the Great Basin, with the highest temperature systems clustering in transtensional areas of highest strain rate in the northwestern Great Basin. Of the 250+ geothermal fields catalogued, step-overs or relay ramps in normal fault zones serve as the most favorable setting, hosting ~32% of the systems. Such areas have multiple, overlapping fault strands, increased fracture density, and thus enhanced permeability. Other common settings include a) intersections between normal faults and strike-slip or oblique-slip faults (22%), where multiple minor faults connect major structures and fluids can flow readily through highly fractured, dilational quadrants, and b) normal fault terminations or tip-lines (22%), where horse-tailing generates closely-spaced faults and increased permeability. Other settings include accommodation zones (i.e., belts of intermeshing, oppositely dipping normal faults; 8%), major normal faults (6%), displacement transfer zones (5%), and pull-aparts in strike-slip faults (4%). In addition, Quaternary faults lie within or near most systems (e.g., Bell and Ramelli, 2007). The relative scarcity of geothermal systems along displacement-maxima of major normal faults may be due to reduced permeability in thick zones of clay gouge and periodic release of stress in major earthquakes. Step-overs, terminations, intersections, and accommodation zones correspond to long-term, critically stressed areas, where fluid pathways are more likely to remain open in networks of closely-spaced, breccia-dominated fractures.1Licence not specifiedover 2 years ago
- Geologic map data in shapefile format that includes faults, unit contacts, unit polygons, attitudes of strata and faults, and surficial geothermal features. 5 cross-sections in Adobe Illustrator format. Comprehensive catalogue of drill-hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. 3D model constructed with EarthVision using geologic map data, cross-sections, drill-hole data, and geophysics.1Licence not specifiedover 2 years ago
- Shapefiles and spreadsheets of structural data, including attitudes of faults and strata and slip orientations of faults. - Detailed geologic mapping of ~30 km2 was completed in the vicinity of the Columbus Marsh geothermal field to obtain critical structural data that would elucidate the structural controls of this field. - Documenting E- to ENE-striking left lateral faults and N- to NNE-striking normal faults. - Some faults cut Quaternary basalts. - This field appears to occupy a displacement transfer zone near the eastern end of a system of left-lateral faults. ENE-striking sinistral faults diffuse into a system of N- to NNE-striking normal faults within the displacement transfer zone. - Columbus Marsh therefore corresponds to an area of enhanced extension and contains a nexus of fault intersections, both conducive for geothermal activity.1Licence not specifiedover 2 years ago
- Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = T / on (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (o1-on) / (o1-o3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the Tuscarora geothermal field was calculated based on the faults mapped Tuscarora area (Dering, 2013). The Tuscarora area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the Tuscarora area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60 degrees dipping fault segments have the highest tendency to slip. Tuscarora is defined by a left-step in a major north- to-north northeast striking, west-dipping range-bounding normal fault system. Faults within the broad step define an anticlinal accommodation zone wherein east-dipping faults mainly occupy western half of the accommodation zone and west-dipping faults lie in the eastern half of the accommodation zone. The geothermal system resides in the axial part of the accommodation, straddling the two fault dip domains. Within the axial part of the accommodation zone several west-dipping, north northeast-striking faults are well oriented for both slip and dilation, including fault strands that are exploited for both production and injection for the Tuscarora geothermal power plant. NOTE: 'o' is used in this description to represent lowercase sigma.1Licence not specifiedover 2 years ago
- Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = T / on (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (o1-on) / (o1-o3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the San Emidio geothermal field was calculated based on the faults mapped Tuscarora area (Rhodes, 2011). The San Emidio area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the San Emidio area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. This is consistent with the shmin determined through inversion of fault data by Rhodes (2011). Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60 degrees dipping fault segments have the highest tendency to slip. Interesting, the San Emidio geothermal field lies in an area of primarily north striking faults, which have moderate dilation tendency and moderate to low slip tendency. NOTE: 'o' is used in this description to represent lowercase sigma.1Licence not specifiedover 2 years ago
- Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = T / on (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (o1-on) / (o1-o3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the Salt Wells geothermal field was calculated based on the faults mapped in the Bunejug Mountains quadrangle (Hinz et al., 2011). The Salt Wells area lies in the Basin and Range Province (N. Hinz personal comm.) As such we applied a normal faulting stress regime to the Salt Wells area faults, with a minimum horizontal stress direction oriented 105, based on inspection of local and regional stress determinations. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60 degrees dipping fault segments have the highest tendency to slip. Several such faults intersect in high density in the core of the accommodation zone in the Bunejug Mountains and local to the Salt Wells geothermal .1Licence not specifiedover 2 years ago
- Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip or to dilate provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database as well as local stress information. Slip and dilation tendency analysis for the Patua geothermal system was calculated based on faults mapped in the Hazen Quadrangle (Faulds et al., 2011). Patua lies near the margin between the Basin and Range province, which is characterized by west-northwest directed extension and the Walker Lane province, characterized by west-northwest directed dextral shear. As such, the Patua area likely has been affected by tectonic stress associated with either or both of stress regimes over geologic time. In order to characterize this stress variation we calculated slip tendency at Patua for both normal faulting and strike slip faulting stress regimes. Dilation tendency results for a strike-slip faulting stress regime and for a normal faulting stress regime are virtually identical, so we present one result for dilation tendency applicable to both strike-slip and normal faulting stress conditions along with slip tendency for both a normal faulting and a strike-slip faulting stress regime. Under these stress conditions, north-northeast striking steeply dipping fault segments have the highest dilation tendency. Under the strike-slip faulting stress regime, north-northwest and east-northeast striking, steeply dipping fault have the highest slip tendency, while under normal faulting conditions north northeast striking, 60 degrees dipping faults have the highest slip tendency.1Licence not specifiedover 2 years ago
- Slip and Dilation Tendency in focus areas Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = T / on (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (o1-on) / (o1-o3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Based on inversion of fault kinematic data, Edwards (2013) interpreted that two discrete stress orientations are preserved at Neal Hot Springs. An older episode of east-west directed extension and a younger episode of southwest-northeast directed sinistral, oblique -normal extension. This interpretation is consistent with the evolution of Cenozoic tectonics in the region (Edwards, 2013). As such we applied a southwest-northeast (060) directed normal faulting stress regime, consistent with the younger extensional episode, to the Neal Hot Springs faults. Under these stress conditions northeast striking steeply dipping fault segments have the highest tendency to dilate and northeast striking 60 degrees dipping fault segments have the highest tendency to slip. Under these stress conditions, both the Neal Fault and Sugarloaf Butte faults area well-oriented for both slip and dilation and thus for fracture permeability. In addition, several subsidiary faults on the eastern side and within the step-over between the Neal fault and Sugarloaf Butte fault are well oriented for slip and dilation as well. NOTE: 'o' is used in this description to represent lowercase sigma.1Licence not specifiedover 2 years ago
- Slip and Dilation Tendency in focus areas Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = T / on (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (o1-on) / (o1-o3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the McGinness Hills geothermal field was calculated based on the faults mapped McGinness Hills area (Siler 2012, unpublished). The McGinness Hills area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the McGinness area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60 degrees dipping fault segments have the highest tendency to slip. The McGinness Hills geothermal system is characterized by a left-step in a north-northeast striking west-dipping fault system within a north northeast striking accommodation zone. As such, the normal faults that define these two structures are well oriented for both slip and dilation, including the west dipping faults that are exploited for both production and injection. Interestingly, although there is pressure communication between production and injection wells at McGinness Hills (B. Delwiche, personal comm.) the northwest striking fault, which creates hard linkage between the production and injection locations, is poorly oriented for both slip and dilation and therefore unlikely to host permeability. NOTE: 'o' is used in this description to represent lowercase sigma.1Licence not specifiedover 2 years ago
- The Tuscarora geothermal system sits within a ~15 km wide left-step in a major west-dipping range-bounding normal fault system. The step over is defined by the Independence Mountains fault zone and the Bull Runs Mountains fault zone which overlap along strike. Strain is transferred between these major fault segments via and array of northerly striking normal faults with offsets of 10s to 100s of meters and strike lengths of less than 5 km. These faults within the step over are one to two orders of magnitude smaller than the range-bounding fault zones between which they reside. Faults within the broad step define an anticlinal accommodation zone wherein east-dipping faults mainly occupy western half of the accommodation zone and west-dipping faults lie in the eastern half of the accommodation zone. The 3D model of Tuscarora encompasses 70 small-offset normal faults that define the accommodation zone and a portion of the Independence Mountains fault zone, which dips beneath the geothermal field. The geothermal system resides in the axial part of the accommodation, straddling the two fault dip domains. The Tuscarora 3D geologic model consists of 10 stratigraphic units. Unconsolidated Quaternary alluvium has eroded down into bedrock units, the youngest and stratigraphically highest bedrock units are middle Miocene rhyolite and dacite flows regionally correlated with the Jarbidge Rhyolite and modeled with uniform cumulative thickness of ~350 m. Underlying these lava flows are Eocene volcanic rocks of the Big Cottonwood Canyon caldera. These units are modeled as intracaldera deposits, including domes, flows, and thick ash deposits that change in thickness and locally pinch out. The Paleozoic basement of consists metasedimenary and metavolcanic rocks, dominated by argillite, siltstone, limestone, quartzite, and metabasalt of the Schoonover and Snow Canyon Formations. Paleozoic formations are lumped in a single basement unit in the model. Fault blocks in the eastern portion of the model are tilted 5-30 degrees toward the Independence Mountains fault zone. Fault blocks in the western portion of the model are tilted toward steeply east-dipping normal faults. These opposing fault block dips define a shallow extensional anticline. Geothermal production is from 4 closely-spaced wells, that exploit a west-dipping, NNE-striking fault zone near the axial part of the accommodation zone.1Licence not specifiedover 2 years ago
- The San Emidio geothermal system is characterized by a left-step in a west-dipping normal fault system that bounds the western side of the Lake Range. The 3D geologic model consists of 5 geologic units and 55 faults. Overlying Jurrassic-Triassic metasedimentary basement is a ~500 m-1000 m thick section of the Miocene lower Pyramid sequence, pre- syn-extensional Quaternary sedimentary rocks and post-extensional Quaternary rocks. 15-30 degrees eastward dip of the stratigraphy is controlled by the predominant west-dipping fault set. Both geothermal production and injection are concentrated north of the step over in an area of closely spaced west dipping normal faults.1Licence not specifiedover 2 years ago
- The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping1Licence not specifiedover 2 years ago
- The McGinness Hills geothermal system lies in a ~8.5 km wide, north-northeast trending accommodation zone defined by east-dipping normal faults bounding the Toiyabe Range to the west and west-dipping normal faults bounding the Simpson Park Mountains to the east. Within this broad accommodation zone lies a fault step-over defined by north-northeast striking, west-dipping normal faults which step to the left at roughly the latitude of the McGinness Hills geothermal system. The McGinness Hills 3D model consists of 9 geologic units and 41 faults. The basal geologic units are metasediments of the Ordovician Valmy and Vininni Formations (undifferentiated in the model) which are intruded by Jurassic granitic rocks. Unconformably overlying is a ~100s m-thick section of Tertiary andesitic lava flows and four Oligocene-to-Miocene ash-flow tuffs: The Rattlesnake Canyon Tuff, tuff of Sutcliffe, the Cambell Creek Tuff and the Nine Hill tuff. Overlying are sequences of pre-to-syn-extensional Quaternary alluvium and post-extensional Quaternary alluvium. 10-15 degrees eastward dip of the Tertiary stratigraphy is controlled by the predominant west-dipping fault set. Geothermal production comes from two west dipping normal faults in the northern limb of the step over. Injection is into west dipping faults in the southern limb of the step over. Production and injection sites are in hydrologic communication, but at a deep level, as the northwest striking fault that links the southern and northern limbs of the step-over has no permeability.1Licence not specifiedover 2 years ago
- This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE's Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.1Licence not specifiedover 2 years ago
- A detailed gravity survey was carried out for the entire Carson Sink in western Nevada (Figure 1) through a subcontract to Zonge Engineering, Inc. The Carson Sink is a large composite basin containing three known, blind high-temperature geothermal systems (Fallon Airbase, Stillwater, and Soda Lake). This area was chosen for a detailed gravity survey in order to characterize the gravity signature of the known geothermal systems and to identify other potential blind systems based on the structural setting indicated by the gravity data. Data were acquired at approximately 400, 800, and 1600 meter intervals for a total of 1,243 stations. The project location and station location points are presented in Figure 14. The station distribution for this survey was designed to complete regional gravity coverage in the Carson Sink area without duplication of available public and private gravity coverage. Gravity data were acquired using a Scintrex CG-5 gravimeter and a LaCoste and Romberg (L&R) Model-G gravimeter. The CG-5 gravity meter has a reading resolution of 0.001 milligals and a typical repeatability of less than 0.005 milligals. The L&R gravity meter has a reading resolution of 0.01 milligals and a typical repeatability of 0.02 milligals. The basic processing of gravimeter readings to calculate through to the Complete Bouguer Anomaly was made using the Gravity and Terrain Correction software version 7.1 for Oasis Montaj by Geosoft LTD. The gravity survey of the Carson Sink yielded a project location and station location map, a Complete Bouguer Anomaly @ 2.67 gm/cc reduction density, a Gravity Complete Bouguer Anomaly at 2.50 g/cc Contour Map, a Gravity Horizontal Gradient Magnitude Shaded Color Contour Map, a Gravity 1st Vertical Derivative Color Contour Map, and an Interpreted Depth to Mesozoic Basement incorporating drill-hole intercept values. A preliminary interpretation of these results suggests that the Carson Sink is a complex composite basin with several major depocenters. Major depocenters are present in the south-central, east-central, and northeastern parts of the basin. The distribution of gravity anomalies suggests a complex pattern of faulting in the subsurface of the basin, with many fault terminations, step-overs, and accommodation zones. The pattern of faulting implies that other, previously undiscovered blind geothermal systems are likely in the Carson Sink. The gravity survey was completed near the end of this project. Thus, more thorough analysis of the data and potential locations of blind geothermal systems is planned for future work.1Licence not specifiedover 2 years ago
- Neal Hot Springs-ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Three cross-sections. - Locations of production, injection, and exploration wells. - Locations of 40Ar/39Ar samples. - Location of XRF geochemical samples. - 3D model constructed with EarthVision using geologic map data, cross-sections, drill-hole data, and geophysics (model not in the ESRI geodatabase).1Licence not specifiedover 2 years ago
- Patua-ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, veins, dikes, unit polygons, and attitudes of strata and faults. - List of stratigraphic units. - Locations of geothermal wells. - Locations of 40Ar/39Ar and tephra samples.1Licence not specifiedover 2 years ago
- Salt Wells-ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, dikes, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Locations of 40Ar/39Ar samples.1Licence not specifiedover 2 years ago
- Tuscarora-ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Detailed unit descriptions of stratigraphic units. - Five cross-sections. - Locations of production, injection, and monitor wells. - 3D model constructed with EarthVision using geologic map data, cross-sections, drill-hole data, and geophysics (model not in the ESRI geodatabase).1Licence not specifiedover 2 years ago
- Wabuska-ESRI geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, veins, dikes, unit polygons, and attitudes of strata. - List of stratigraphic units and stratigraphic correlation diagram. - One cross-section.1Licence not specifiedover 2 years ago
- We conducted a comprehensive analysis of the structural controls of geothermal systems within the Great Basin and adjacent regions. Our main objectives were to: 1) Produce a catalogue of favorable structural environments and models for geothermal systems. 2) Improve site-specific targeting of geothermal resources through detailed studies of representative sites, which included innovative techniques of slip tendency analysis of faults and 3D modeling. 3) Compare and contrast the structural controls and models in different tectonic settings. 4) Synthesize data and develop methodologies for enhancement of exploration strategies for conventional and EGS systems, reduction in the risk of drilling non-productive wells, and selecting the best EGS sites. Phase I (Year 1) involved a broad inventory of structural settings of geothermal systems in the Great Basin, Walker Lane, and southern Cascades, with the aim of developing conceptual structural models and a structural catalogue of the most favorable structural environments. This overview permitted selection of 5-6 representative sites for more detailed studies in Years 2 and 3. Sites were selected on the basis of quality of exposure, potential for development, availability of subsurface data, and type of system, so that major types of systems can be evaluated and compared. The detailed investigations included geologic mapping, kinematic analysis, stress determinations, gravity surveys, integration of available geophysical data, slip tendency analysis, and for some areas 3D modeling. In Year 3, the detailed studies were completed and data synthesized to a) compare structural controls in various tectonic settings, b) complete the structural catalogue, and c) apply knowledge to exploration strategies and selection of drilling sites.1Licence not specifiedover 2 years ago
- Slip and dilation tendency on the Great Basin fault surfaces (from the USGS Quaternary Fault Database) were calculated using 3DStress (software produced by Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by the measured ambient stress field. - Values range from a maximum of 1 (a fault plane ideally oriented to slip or dilate under ambient stress conditions) to zero (a fault plane with no potential to slip or dilate). - Slip and dilation tendency values were calculated for each fault in the Great Basin. As dip is unknown for many faults in the USGS Quaternary Fault Database, we made these calculations using the dip for each fault that would yield the maximum slip or dilation tendency. As such, these results should be viewed as maximum slip and dilation tendency. - The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along-fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions were calculated across the entire Great Basin. Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005). The minimum horizontal stress direction (Shmin) was contoured, and spatial bins with common Shmin directions were calculated. Based on this technique, we subdivided the Great Basin into nine regions (Shmin1Licence not specifiedover 2 years ago
- The information given in this file represents greenhouse gas (GHG) emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite the fact that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.1Licence not specifiedover 2 years ago
- The information given in this file pertains to Argonne life-cycle analyses (LCAs) of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the levelized cost of energy (LCOE) group using the Geothermal Electricity Evaluation Model (GETEM) as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.1Licence not specifiedover 2 years ago
- Dixie Valley Binary Plant data points for January - March 6 2014. Used to demonstrate the techno-economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant. Data includes Brine Flow, Brine Return Temperature, Brine Supply Temperature, Generation Output, Net Generation, Parasitic Loss, and Dry Bulb Temperature.1Licence not specifiedover 2 years ago
- Dixie Valley Binary Plant Monthly Costs from February, 2014. Includes cost and man-hour data demonstrating the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the plant.1Licence not specifiedover 2 years ago
- Formal Report: Dixie Valley Binary DOE Report February 2014. Includes summary of data, operations, outages, and curtailments in order to support the techno-economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant.1Licence not specifiedover 2 years ago
- From July 20th to July 22nd, 2010, Chambers Group personnel conducted a cultural resources inventory of the project area. The recordation and inventory resulted in the recordation a single newly identified prehistoric site (CrNV-2-9605) and five isolated finds (CrNV-2-1490 to 1494). The prehistoric site is a small lithic scatter composed exclusively of chalcedony with two formed tools. CrNV-2-9605 is recommended as not eligible to the National Register of Historic Places (NRHP) under all Criterion. The isolated finds consist of a single prehistoric flake and four pieces of historic debris. All of the isolated finds are categorically not eligible for the NRHP per the State Protocol Agreement between the BLM and Nevada SHPO. The report included in this submission details the findings of the study.1Licence not specifiedover 2 years ago
- This report describes the geothermal resource at McGee Mountain, including: 1. Local geology 2. Thermal features 3. Known boreholes and temperature gradients 4. Geophysical surveys 5. Fluid geochemistry and geothermometry 6. Estimate of the heat-in-place Description of the heat-in-place estimate: The magnitude of the geothermal resource at McGee Mountain (Painted Hills) has been estimated using a Monte Carlo method applied to estimating heat-in-place. The method relies (along with certain other parameters) on estimates of the area, thickness and average temperature of the resource, but among these, only area has some constraint at this time. Therefore, the estimates used for thickness and temperature have been based on the characteristics of other geothermal resources in Nevada. Results yield a 90%-probable ("P90") thermal energy-in-place estimate of 87,300 MWth-years (that is, 90% of estimates are higher). We consider this to be a minimum likely value. At 50% probability ("P50") the estimate is 134,000 MWth-years. The recoverable portion of the preceding estimate of energy-in-place has also been estimated and converted into electrical energy, using values of recovery factor, rejection temperature, utilization factor, plant capacity factor and power plant life that are provided. The minimum (90% probable) estimate for generation potential is about 25 MWe for 30 years (or a total of 750 MWe-years) and at 50% probability the estimate is 52 MWe for 30 years (or a total of 1,560 MWe-years). These estimates are somewhat larger than a public-domain McGee resource estimate made by GeothermEx in 2004, because a 2-m deep temperature survey by Caldera has established continuance of the thermal anomaly about a half mile further north than previously documented. This resource estimate was made without reference to the Caldera property (project area) boundary, but it is likely that the entire magnitude of estimated resource lies within it. The estimate should be regarded with caution because there needs to be subsequent proof of area, thickness, temperature and commercial permeability by means of deep drilling and testing. No heat-in-place estimate of this type should ever be used to determine the final, installed size of a well field and power plant.1Licence not specifiedover 2 years ago
- The McGee Mountain geothermal area was selected to test early-stage shallow temperature survey techniques and drill two slim holes to test the resource. Geothermal Technical Partners, Inc. was able to complete only a small portion of the project before lack of funding prevented further exploration work. This work included a shallow (2-meter) temperature survey, a Geoprobe survey, a close-spaced gravity survey, and several reports on geologic and transmission viability. The 18-page report includes a description of the geothermal geology of the area, geochemistry and geothermometry of nearby springs and wells, and findings from the shallow temperature survey, Geoprobe survey, close-spaced gravity survey, heat-in-place estimate, transmission viability, and an archeological survey. The report makes the following conclusions: Both the shallow 2-meter and the Geoprobe surveys are cost-effective methods to detect subsurface thermal anomalies in early-stage exploration, prior to more expensive temperature gradient drilling. The major advantages of the 2-meter survey are its extreme portability (no roads needed), cost per site measurement, and low environmental impact. The 2-meter survey's disadvantages are its inability to penetrate hard substrates and the noise effects due to solar heating of the ground. The Geoprobe's advantages are its ability to collect temperature and uncontaminated water samples, greater depth of penetration (to 60m), relatively low cost, and low environmental impact. The Geoprobe's disadvantages are its inability to go off-road or to penetrate hard substrates. Costs to perform both types of surveys are low, together less than the cost of one conventional temperature gradient well. Given the potential increase in data that these surveys can provide, this is extreme value for the exploration dollar.1Licence not specifiedover 2 years ago
- Penrose Well Temperatures Geothermal waters have been encountered in several wells near Penrose in Fremont County, Colorado. Most of the wells were drilled for oil and gas exploration and, in a few cases, production. This ESRI point shapefile utilizes data from 95 wells in and around the Penrose area provided by the Colorado Oil and Gas Conservation Commission (COGCC) database at http://cogcc.state.co.us/ . Temperature data from the database were used to calculate a temperature gradient for each well. This information was then used to estimate temperatures at various depths. Projection: UTM Zone 13 NAD27 Extent: West -105.224871 East -105.027633 North 38.486269 South 38.259507 Originators: Colorado Oil and Gas Conservation Commission (COGCC) Karen Christopherson1Licence not specifiedover 2 years ago
- Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Feb to 28 Feb 2014.1Licence not specifiedover 2 years ago
- Modeled ground magnetic data was extracted from the Pan American Center for Earth and Environmental Studies database at http://irpsrvgis08.utep.edu/viewers/Flex/GravityMagnetic/GravityMagnetic_CyberShare/ on 2/29/2012. The downloaded text file was then imported into an Excel spreadsheet. This spreadsheet data was converted into an ESRI point shapefile in UTM Zone 13 NAD27 projection, showing location and magnetic field strength in nano-Teslas. This point shapefile was then interpolated to an ESRI grid using an inverse-distance weighting method, using ESRI Spatial Analyst. The grid was used to create a contour map of magnetic field strength.1Licence not specifiedover 2 years ago
- Modeled Bouger-Corrected Gravity data was extracted from the Pan American Center for Earth and Environmental Studies Gravity Database of the U.S. at http://irpsrvgis08.utep.edu/viewers/Flex/GravityMagnetic/GravityMagnetic_CyberShare/ on 2/29/2012. The downloaded text file was opened in an Excel spreadsheet. This spreadsheet data was then converted into an ESRI point shapefile in UTM Zone 13 NAD27 projection, showing location and gravity (in milligals). This data was then converted to grid and then contoured using ESRI Spatial Analyst. Data from From University of Texas: Pan American Center for Earth and Environmental Studies1Licence not specifiedover 2 years ago
- CIRES provided polygon shapefiles showing areas of anomalously warm ground, derived from ASTER and LANDSAT remotely sensed thermal infrared imagery. Partly from these anomalies, and partly through other evidence layers, CIRES came up with 'polygons' representing areas prospective for geothermal development. Many of the anomalies are much larger and of different shapes than typical geothermal outflow zones, and many occur on ridgetops or other places geothermal systems typically do not form. This might indicate that the thermal anomalies are mostly solar (not geothermal) in nature. The purpose of this analysis is to construct some spatial statistics to help understand the viability of the CIRES target model. In this model, ground thermal anomalies in Colorado are detected using either ASTER or LANDSAT thermal infrared spectral bands (among others). Those areas above some anomaly threshold (1 and 2 standard deviations) were then designated as "anomalous." One way to test the viability of their model would be to examine the area spatial statistics make use of the relative area of anomaly versus the total area, and the relative proportion of overlap between ASTER and LANDSAT data. If the area considered to be anomalous is large compared to the total area, then the infrared imagery would be a "blunt tool" for finding geothermal systems: the search is confined to too large an area. If there is disagreement between the areas found to be anomalous by ASTER and the areas found to be anomalous by LANDSAT, then the technique might not be robust. To do this, ESRI Spatial Analyst was used to convert all of the anomaly shapefiles into ESRI grids with a 100m cell size. The the total area of the target polygons as well as the areas of ASTER and LANDSAT anomaly were calculated. Finally, the area of overlap between the ASTER and LANDSAT anomalies in a given polygon area was calculated.1Licence not specifiedover 2 years ago
- This dataset contains several memos describing geothermal targets outlined by Flint personnel in Colorado. Phase 1 involved an ASTER and LANDSAT thermal infrared imagery assessment conducted by CIRES of the University of Colorado, which identified areas of warm ground that might indicate geothermal heating. CIRES used the thermal ground anomalies, together with other GIS layers, to come up with a set of areas ("polygons") having high geothermal potential. This was followed by a "ground truthing" or site assessment by Geothermal Development Associates of Reno Nevada, during the summer and fall of 2011. Of the many areas targeted and visited, several stood out for their overall geothermal potential. In the first memo, "Colorado Targets", GDA's Richard "Rick" Zehner describes the geothermal geology of the following properties, which were deemed to have the highest geothermal potential: 1. Routt (aka Strawberry Park) Hot Springs in Routt County; 2. Rico area, Delores County; 3. Pagosa Springs, Archuleta County; 4. San Luis Valley, Alamosa and Conejos Counties; 5. Lemon Hot Springs, San Miguel County The second memo, "Comments on Rick's Report", from CIRES investigators, is a critical evaluation of Zehner's memo, in relation to CIRES' satellite thermal anomaly maps. The third memo, "Penrose Area" is a detailed description of preliminary investigations into the geothermal potential of that area in Fremont County.1Licence not specifiedover 2 years ago
- These line shapefiles trace apparent topographic and air-photo lineaments in various counties in Colorado. It was made in order to identify possible fault and fracture systems that might be conduits for geothermal fluids, as part of a DOE reconnaissance geothermal exploration program. Geothermal fluids commonly utilize fault and fractures in competent rocks as conduits for fluid flow. Geothermal exploration involves finding areas of high near-surface temperature gradients, along with a suitable "plumbing system" that can provide the necessary permeability. Geothermal power plants can sometimes be built where temperature and flow rates are high. This line shapefile is an attempt to use desktop GIS to delineate possible faults and fracture orientations and locations in highly prospective areas prior to an initial site visit. Geochemical sampling and geologic mapping could then be centered around these possible faults and fractures. To do this, georeferenced topographic maps and aerial photographs were utilized in an existing GIS, using ESRI ArcMap 10.0 software. The USA_Topo_Maps and World_Imagery map layers were chosen from the GIS Server at server.arcgisonline.com, using a UTM Zone 13 NAD27 projection. This line shapefile was then constructed over that which appeared to be through-going structural lineaments in both the aerial photographs and topographic layers, taking care to avoid manmade features such as roads, fence lines, and utility right-of-ways. Still, it is unknown what actual features these lineaments, if they exist, represent. Although the shapefiles are arranged by county, not all areas within any county have been examined for lineaments. Work was focused on either satellite thermal infrared anomalies, known hot springs or wells, or other evidence of geothermal systems. Finally, lineaments may be displaced somewhat from their actual location, due to such factors as shadow effects with low sun angles in the aerial photographs. Credits: These lineament shapefile was created by Geothermal Development Associates, as part of a geothermal geologic reconnaissance performed by Flint Geothermal, LLC, of Denver Colorado. Use Limitation: These shapefiles were constructed as an aid to geothermal exploration in preparation for a site visit for field checking. We make no claims as to the existence of the lineaments, their location, orientation, and/or nature.1Licence not specifiedover 2 years ago
- This geodatabase was built to cover several geothermal targets developed by Flint Geothermal in 2012 during a search for high-temperature systems that could be exploited for electric power development. Several of the thermal springs at Wagon Wheel Gap have geochemistry and geothermometry values indicative of high-temperature systems. Datasets include: 1. Results of reconnaissance shallow (2 meter) temperature surveys 2. Air photo lineaments 3. Groundwater geochemistry 4. Power lines 5. Georeferenced geologic map of Routt County 6. Various 1:24,000 scale topographic maps1Licence not specifiedover 2 years ago
- This geodatabase was built to cover several geothermal targets developed by Flint Geothermal in 2012 during a search for high-temperature systems that could be exploited for electric power development. Several of the thermal springs and wells in the Routt Hot Spring and Steamboat Springs areahave geochemistry and geothermometry values indicative of high-temperature systems. Datasets include: 1. Results of reconnaissance shallow (2 meter) temperature surveys 2. Air photo lineaments 3. Groundwater geochemistry 5. Georeferenced geologic map of Routt County 6. Various 1:24,000 scale topographic maps1Licence not specifiedover 2 years ago
- This geodatabase was built to cover several geothermal targets developed by Flint Geothermal in 2012 during a search for high-temperature systems that could be exploited for electric power development. Several of the thermal springs have geochemistry and geothermometry values indicative of high-temperature systems. In addition, the explorationists discovered a very young Climax-style molybdenum porphyry system northeast of Rico, and drilling intersected thermal waters at depth. Datasets include: 1. Structural data collected by Flint Geothermal 2. Point information 3. Mines and prospects from the USGS MRDS dataset 4. Results of reconnaissance shallow (2 meter) temperature surveys 5. Air photo lineaments 6. Areas covered by travertine 7. Groundwater geochemistry 8. Land ownership in the Rico area 9. Georeferenced geologic map of the Rico Quadrangle, by Pratt et al. 10. Various 1:24,000 scale topographic maps1Licence not specifiedover 2 years ago
- This report outlines the approach and methodology of the utilization of thermal satellite imagery to find areas of warm ground that might indicate heat flow from a buried geothermal system. The satellite platforms, modeling equations and corrections to the data are discussed. Some specific findings from the survey are shown, together with conclusions.1Licence not specifiedover 2 years ago
- Subsurface geothermal activity has a thermal expression that can be observed at the surface. Such spatial temperature gradients are within the radiometric resolution that is characteristic of a wide range of satellites that carry thermal sensors. For this effort, CIRES (part of the University of Colorado) used a hierarchical approach in which we examined data from Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) onboard Landsat platforms and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite to digitally model warm surface exposures. Geological characteristics such as faulting and other available datasets for known thermally active areas in Colorado were used in conjunction with the satellite thermal imagery to rank potential areas of geothermal activity.1Licence not specifiedover 2 years ago
- The CIRES remote sensing unit of the University of Colorado was commissioned by Flint Geothermal LLC to identify areas of warm ground that could signify the thermal signature of "blind" geothermal systems. Using ASTER and LANDSAT data along with other characteristics considered favorable for the existence of geothermal systems, CIRES came up with a set of high-priority targets in Colorado. This Power Point presentation outlines these high-priority areas.1Licence not specifiedover 2 years ago
- This map shows areas of anomalous surface temperature around south Steamboat Springs as identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.1Licence not specifiedover 2 years ago
- This map shows areas of anomalous surface temperature around South Canyon Hot Springs as identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.1Licence not specifiedover 2 years ago
- This map shows areas of anomalous surface temperature in Ouray identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.1Licence not specifiedover 2 years ago
- This map shows areas of anomalous surface temperature in northern Saguache Counties identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.1Licence not specifiedover 2 years ago
- This map shows areas of anomalous surface temperature in northern Saguache Counties identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.1Licence not specifiedover 2 years ago
- This map shows areas of anomalous surface temperature in northern Saguache Counties identified from ASTER and LANDSAT thermal data and spatial based insolation model. The temperature for the ASTER data was calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas having anomalous temperature in the ASTER data are shown in blue diagonal hatch, while areas having anomalous temperature in the LANDSAT data are shown in magenta on the map. Thermal springs and areas with favorable geochemistry are also shown. Springs or wells having non-favorable geochemistry are shown as blue dots.1Licence not specifiedover 2 years ago
- In 2010 and 2011, Flint Geothermal commissioned CIRES from the University of Colorado to attempt to detect "blind" or buried geothermal systems using remote sensing. CIRES utilized thermal infrared bands from ASTER and LANDSAT satellite imagery to detect areas of warm ground in parts of Colorado. During the summers of 2011 and 2012, geologists from Geothermal Development Associates of Reno Nevada performed "ground truthing" or site assessments on a number of these thermal targets, as well as known geothermal systems at or near the targets. This dataset consists of a number of memos from CIRES and GDA describing the thermal targets and fieldwork performed at them.1Licence not specifiedover 2 years ago
- This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.1Licence not specifiedover 2 years ago
- This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled"warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.1Licence not specifiedover 2 years ago
- This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.1Licence not specifiedover 2 years ago
- This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.1Licence not specifiedover 2 years ago
- This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.1Licence not specifiedover 2 years ago
- This map shows areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled "very warm modeled surface temperature" are shown in red on the map. Areas that had temperatures between 1o and 2o were considered ASTER modeled "warm modeled surface temperature" are shown in yellow on the map. This map also includes the locations of shallow temperature survey points, locations of springs or wells with favorable geochemistry, faults, transmission lines, and areas of modeled basement weakness "fairways." Note: 'o' is used in this description to represent lowercase sigma.1Licence not specifiedover 2 years ago
- Structural orientations (fractures, joints, faults, lineaments, bedding orientations, etc.) were collected with a standard Brunton compass during routine field examinations of geothermal phenomena in Colorado. Often multiple orientations were taken from one outcrop. Care was taken to ensure outcrops were "in place". Point data was collected with a hand-held GPS unit. The structural data is presented both as standard quadrant measurements and in format suitable for ESRI symbology1Licence not specifiedover 2 years ago
- Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1o and 2o were considered ASTER modeled warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.1Licence not specifiedover 2 years ago
- Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1o and 2o were considered ASTER modeled warm surface exposures (thermal anomalies) Note: 'o' is used in this description to represent lowercase sigma.1Licence not specifiedover 2 years ago
- Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies) Note: 'o' is used in this description to represent lowercase sigma.1Licence not specifiedover 2 years ago
- Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.1Licence not specifiedover 2 years ago
- This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. Note: 'o' is used in this description to represent lowercase sigma1Licence not specifiedover 2 years ago
- Note: This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1o and 2o were considered ASTER modeled warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.1Licence not specifiedover 2 years ago
- This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.1Licence not specifiedover 2 years ago
- This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma.1Licence not specifiedover 2 years ago
- This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma1Licence not specifiedover 2 years ago
- This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma1Licence not specifiedover 2 years ago
- This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies). Note: 'o' is used in this description to represent lowercase sigma1Licence not specifiedover 2 years ago
- This layer contains areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2o were considered ASTER modeled very warm surface exposures (thermal anomalies) Note: 'o' is used in this description to represent lowercase sigma.1Licence not specifiedover 2 years ago
- This layer contains the areas identified as targets of potential geothermal activity. The Criteria used to identify the target areas include: hot/warm surface exposures modeled from ASTER/Landsat satellite imagery and geological characteristics, alteration mineral commonly associated with hot springs (clays, Si, and FeOx) modeled from ASTER and Landsat data, Colorado Geological Survey (CGS) known thermal hot springs/wells and heat-flow data points, Colorado deep-seated fault zones, weakened basement identified from isostatic gravity data, and Colorado sedimentary and topographic characteristics.1Licence not specifiedover 2 years ago
- This layer contains the regional faults of Colorado. The geodatabase includes show faults throughout Colorado and can be accessed with a GIS software.1Licence not specifiedover 2 years ago
- This layer contains the areas identified as areas of anomalous surface temperature from Landsat satellite imagery in Western Colorado. Data was obtained for two different dates. The digital numbers of each Landsat scene were converted to radiance and the temperature was calculated in degrees Kelvin and then converted to degrees Celsius for each land cover type using the emissivity of that cover type. And this process was repeated for each of the land cover types (open water, barren, deciduous forest and evergreen forest, mixed forest, shrub/scrub, grassland/herbaceous, pasture hay, and cultivated crops). The temperature of each pixel within each scene was calculated using the thermal band. In order to calculate the temperature an average emissivity value was used for each land cover type within each scene. The NLCD 2001 land cover classification raster data of the zones that cover Colorado were downloaded from USGS site and used to identify the land cover types within each scene. Areas that had temperature residual greater than 2o, and areas with temperature equal to 1o to 2o, were considered Landsat modeled very warm and warm surface exposures (thermal anomalies), respectively. Note: 'o' is used in this description to represent lowercase sigma.1Licence not specifiedover 2 years ago
- This layer contains transmission network of Colorado as released by Xcel Energy.1Licence not specifiedover 2 years ago
- This layer contains favorable geochemistry for high-temperature geothermal systems, as interpreted by Richard "Rick" Zehner. The data is compiled from the data obtained from the USGS. The original data set combines 15,622 samples collected in the State of Colorado from several sources including 1) the original Geotherm geochemical database, 2) USGS NWIS (National Water Information System), 3) Colorado Geological Survey geothermal sample data, and 4) original samples collected by R. Zehner at various sites during the 2011 field season. These samples are also available in a separate shapefile FlintWaterSamples.shp. Data from all samples were reportedly collected using standard water sampling protocols (filtering through 0.45 micron filter, etc.) Sample information was standardized to ppm (micrograms/liter) in spreadsheet columns. Commonly-used cation and silica geothermometer temperature estimates are included.1Licence not specifiedover 2 years ago
- This layer contains the weakened basement rocks. Isostatic gravity was utilized to identify structural basin areas, characterized by gravity low values reflecting weakened basement rocks. Together interpreted regional fault zones and basin outlines define geothermal "exploration fairways", where the potential exists for deep, superheated fluid flow in the absence of Pliocene or younger volcanic units.1Licence not specifiedover 2 years ago
- This layer contains the heat flow sites and data of the State of Colorado compiled from the International Heat Flow Commission (IHFC) of the International Association of Seismology and Physics of the Earth's Interior (IASPEI) global heat flow database. The data include different items: Item number, descriptive code, name of site, latitude and longitude, elevation, depth interval, number of temperature data, temperature gradient, number of conductivity measurement, average conductivity, number of heat generation measurements, average heat production, heat flow, number of individual sites, references, and date of publication.1Licence not specifiedover 2 years ago
- Shallow temperature surveys are useful in early-stage geothermal exploration to delineate surface outflow zones, with the intent to identify the source of upwelling, usually a fault. Detailed descriptions of the 2-meter survey method and equipment design can be found in Coolbaugh et al. (2007) and Sladek et al. (2007), and are summarized here. The survey method was devised to measure temperature as far below the zone of solar influence as possible, have minimal equilibration time, and yet be portable enough to fit on the back of an all-terrain vehicle (ATV); Figure 2). This method utilizes a direct push technology (DPT) technique where 2.3 m long, 0.54" outer diameter hollow steel rods are pounded into the ground using a demolition hammer. Resistance temperature devices (RTD) are then inserted into the rods at 2-meter depths, and allowed to equilibrate for one hour. The temperatures are then measured and recorded, the rods pulled out of the ground, and re-used at future sites. Usually multiple rods are planted over the course of an hour, and then the sampler returns back to the first station, measures the temperatures, pulls the rods, and so on, to eliminate waiting time. At Wagon Wheel Gap, 32 rods were planted around the hot springs between June 20 and July 1, 2012. The purpose was to determine the direction of a possible upflow fault or other structure. Temperatures at 1.5m and 2m depths were measured and recorded in the attribute table of this point shapefile. Several anomalous temperatures suggest that outflow is coming from a ~N60W striking fault or shear zone that contains the quartz-fluorite-barite veins of the adjacent patented mining claims. It should be noted that temperatures at 2m depth vary according to the amount of solar heating from above, as well as possible geothermal heating from below.1Licence not specifiedover 2 years ago
- This layer contains the areas identified as areas of anomalous surface temperature from ASTER satellite imagery. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. Areas that had temperature greater than 2o, and areas with temperature equal to 1o to 2o, were considered ASTER modeled very warm and warm surface exposures (thermal anomalies), respectively Note: 'o' is used in place of lowercase sigma in this description.1Licence not specifiedover 2 years ago
- This layer traces apparent topographic and air-photo lineaments in the area around Pagosa springs in Archuleta County, Colorado. It was made in order to identify possible fault and fracture systems that might be conduits for geothermal fluids. Geothermal fluids commonly utilize fault and fractures in competent rocks as conduits for fluid flow. Geothermal exploration involves finding areas of high near-surface temperature gradients, along with a suitable plumbing system that can provide the necessary permeability. Geothermal power plants can sometimes be built where temperature and flow rates are high. To do this, georeferenced topographic maps and aerial photographs were utilized in an existing GIS, using ESRI ArcMap 10.0 software. The USA_Topo_Maps and World_Imagery map layers were chosen from the GIS Server at server.arcgisonline.com, using a UTM Zone 13 NAD27 projection. This line shapefile was then constructed over that which appeared to be through-going structural lineaments in both the aerial photographs and topographic layers, taking care to avoid manmade features such as roads, fence lines, and right-of-ways. These lineaments may be displaced somewhat from their actual location, due to such factors as shadow effects with low sun angles in the aerial photographs. Note: This shape file was constructed as an aid to geothermal exploration in preparation for a site visit for field checking. We make no claims as to the existence of the lineaments, their location, orientation, and nature.1Licence not specifiedover 2 years ago
- Numerical modeling of the 2011 shear stimulation at the Desert Peak Well 27-15 using a coupled thermal-hydrological-mechanical simulator. This submission contains the finite element heat and mass transfer (FEHM) executable code for a 64-bit PC Windows-7 machine, and the input and output files for the results presented in the included paper from ARMA-2013 meeting.1Licence not specifiedover 2 years ago
- Preliminary performance of high-temperature (HT) high-speed (HS) data link at room temperature over 5000 ft of wireline. The data shows ability of the data link to adapt by decreasing speed.1Licence not specifiedover 2 years ago
- The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimama drill site was set up to acquire a continuous record of basaltic volcanism along the central volcanic axis and to test the extent of geothermal resources beneath the Snake River aquifer. Data submitted by project collaborator Doug Schmitt, University of Alberta1Licence not specifiedover 2 years ago
- The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimama drill site was set up to acquire a continuous record of basaltic volcanism along the central volcanic axis and to test the extent of geothermal resources beneath the Snake River aquifer. This submission includes photos of the core samples taken from the Kimberly drill hole. Data submitted by project collaborator Doug Schmitt, University of Alberta *Note - The archive file "kimPhotos.zip" contains all of the photos associated with this submission in a more easily downloaded format1Licence not specifiedover 2 years ago
- The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. This submission includes photos of the core samples taken from the Mountain Home drill hole. Data submitted by project collaborator Doug Schmitt, University of Alberta *Note - The archive file "MH Photos.zip" contains all of the photos associated with this submission in a more easily downloaded format1Licence not specifiedover 2 years ago
- The objective of advanced drilling and logging technologies is to promote ways and means to reduce the cost of geothermal drilling through an integrated effort which involves developing an understanding of geothermal drilling and logging needs, elucidating best practices, and fostering an environment and mechanisms to share methods and means to advance the state of the art. Drilling is an essential and expensive part of geothermal exploration, development, and utilization. Drilling, logging, and completing geothermal wells are expensive because of high temperatures and hard, fractured formations. The consequences of reducing cost are often impressive, because drilling and well completion can account for more than half of the capital cost for a geothermal power project. The objectives of Advanced Geothermal Drilling and Logging Technologies are: 1. Quantitatively understand geothermal drilling costs from around the world and identify ways to reduce those costs, while maintaining or enhancing productivity. 2. Identify and develop new and improved technologies for significantly reducing the cost of geothermal well construction to lower the cost of electricity and/or heat produced with geothermal resources. 3. Inform the international geothermal community about these drilling technologies. 4. Provide a vehicle for international cooperation, field tests, etc. toward the development and demonstration of improved geothermal drilling and logging technologies.1Licence not specifiedover 2 years ago
- Dixie Valley production data for January 2014, for a DOE Report. Used to demonstrate the techno-economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant. *Note - This data is incomplete. See link below "Monthly Production Data September 2014" for more complete data set.1Licence not specifiedover 2 years ago
- DOE Report of the binary cycle production data from Dixie Valley for January, 2014. Includes summarized data, operations, outages, and curtailments in order to support the techno-economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant.1Licence not specifiedover 2 years ago
- The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimberly drill hole was selected to document continuous volcanism when analysed in conjunction with the Kimama and is located near the margin of the plain. This submission includes photos of the core samples taken from the Kimberly drill hole. Data submitted by project collaborator Doug Schmitt, University of Alberta *Note - The archive file "Photos.zip" contains all of the photos associated with this submission in a more easily downloaded format1Licence not specifiedover 2 years ago
- The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta1Licence not specifiedover 2 years ago
- The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimberly drill hole was selected to document continuous volcanism when analysed in conjunction with the Kimama and is located near the margin of the plain. Data submitted by project collaborator Doug Schmitt, University of Alberta1Licence not specifiedover 2 years ago
- We use ambient noise correlation (ANC) to create a detailed image of the subsurface seismic velocity at the Newberry EGS site down to 5 km. We collected continuous data for the 22 stations in the Newberry network, together with 12 additional stations from the nearby CC, UO and UW networks. The data were instrument corrected, whitened and converted to single bit traces before cross correlation according to the methodology in Benson (2007). There are 231 unique paths connecting the 22 stations of the Newberry network. The additional networks extended that to 402 unique paths crossing beneath the Newberry site.1Licence not specifiedover 2 years ago
- Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key tool used to infer the subsurface fracture geometry. Traditional earthquake detection and location techniques are often employed to identify microearthquakes in geothermal regions. However, most commonly used algorithms may miss events if the seismic signal of an earthquake is small relative to the background noise level or if a microearthquake occurs within the coda of a larger event. Consequently, we have developed a set of algorithms that provide improved microearthquake detection. Our objective is to investigate the microseismicity at the DOE Newberry EGS site to better image the active regions of the underground fracture network during and immediately after the EGS stimulation. Detection of more microearthquakes during EGS stimulations will allow for better seismic delineation of the active regions of the underground fracture system. This improved knowledge of the reservoir network will improve our understanding of subsurface conditions, and allow improvement of the stimulation strategy that will optimize heat extraction and maximize economic return.1Licence not specifiedover 2 years ago
- Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Jan to 31 Jan 2014.1Licence not specifiedover 2 years ago
- Excel files are provided with well production and injection data for binary facilities in Nevada. The files contain the data that reported montly to the Nevada Bureau of Mines and Geology (NBMG) by the facility operators. this data has been complied into Excel spreadsheets for each of the facilities given on the NBMG web site.1Licence not specifiedover 2 years ago
- Cost and man-hour data supporting the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant. Data for December 20131Licence not specifiedover 2 years ago
- Sensor data proving the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant. Monthly data for 20131Licence not specifiedover 2 years ago
- Summary report of data, operations, outages, and curtailments in order to support the techno-economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant.1Licence not specifiedover 2 years ago
- Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Dec to 31 Dec 2013.1Licence not specifiedover 2 years ago
- The Newberry Volcano EGS Demonstration in central Oregon, a 3 year project started in 2010, tests recent technological advances designed to reduce the cost of power generated by EGS in a hot, dry well (NWG 55-29) drilled in 2008. First, the stimulation pumps used were designed to run for weeks and deliver large volumes of water at moderate well-head pressure. Second, to stimulate multiple zones, AltaRock developed thermo-degradable zonal isolation materials (TZIMs) to seal off fractures in a geothermal well to stimulate secondary and tertiary fracture zones. The TZIMs degrade within weeks, resulting in an optimized injection/ production profile of the entire well. Third, the project followed a project-specific Induced Seismicity Mitigation Plan (ISMP) to evaluate, monitor for, and mitigate felt induced seismicity. Stimulation started October 17, 2012 and continued for 7 weeks, with over 41,000 m3 of water injected. Two TZIM treatments successfully shifted the depth of stimulation. Injectivity, DTS, and seismic analysis indicate that fracture permeability in well NWG 55-29 was enhanced by two orders of magnitude. This submission includes all of the files and reports associated with the geophysical exploration, stimulation, and monitoring included in the scope of the project.1Licence not specifiedover 2 years ago
- Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Nov to 30 Nov 2013.1Licence not specifiedover 2 years ago
- Data generated from the Alum Innovative Exploration Project, one of several promising geothermal properties located in the middle to upper Miocene (~11-5 Ma, or million years BP) Silver Peak-Lone Mountain metamorphic core complex (SPCC) of the Walker Lane structural belt in Esmeralda County, west-central Nevada. The geothermal system at Alum is wholly concealed; its upper reaches discovered in the late 1970s during a regional thermal-gradient drilling campaign. The prospect boasts several shallow thermal-gradient (TG) boreholes with TG >75oC/km (and as high as 440oC/km) over 200-m intervals in the depth range 0-600 m. Possibly boiling water encountered at 239 m depth in one of these boreholes returned chemical- geothermometry values in the range 150-230oC. GeothermEx (2008) has estimated the electrical- generation capacity of the current Alum leasehold at 33 megawatts for 20 years; and the corresponding value for the broader thermal anomaly extending beyond the property at 73 megawatts for the same duration.1Licence not specifiedover 2 years ago
- Data generated from the Silver Peak Innovative Exploration Project, in Esmeralda County, Nevada, encompasses a deep-circulation (amagmatic) meteoric-geothermal system circulating beneath basin-fill sediments locally blanketed with travertine in western Clayton Valley (lithium-rich brines from which have been mined for several decades). Spring- and shallow-borehole thermal-water geochemistry and geothermometry suggest that a Silver Peak geothermal reservoir is very likely to attain the temperature range 260- 300oF (~125-150oC), and may reach 300-340oF (~150-170oC) or higher (GeothermEx, Inc., 2006). Results of detailed geologic mapping, structural analysis, and conceptual modeling of the prospect (1) support the GeothermEx (op. cit.) assertion that the Silver Peak prospect has good potential for geothermal-power production; and (2) provide a theoretical geologic framework for further exploration and development of the resource. The Silver Peak prospect is situated in the transtensional (regional shearing coupled with extension) Walker Lane structural belt, and squarely within the late Miocene to Pliocene (11 Ma to ~5 Ma) Silver Peak-Lone Mountain metamorphic core complex (SPCC), a feature that accommodated initial displacement transfer between major right-lateral strike- slip fault zones on opposite sides of the Walker Lane. The SPCC consists essentially of a ductiley-deformed lower plate, or core, of Proterozoic metamorphic tectonites and tectonized Mesozoic granitoids separated by a regionally extensive, low-angle detachment fault from an upper plate of severely stretched and fractured structural slices of brittle, Proterozoic to Miocene-age lithologies. From a geothermal perspective, the detachment fault itself and some of the upper-plate structural sheets could function as important, if secondary, subhorizontal thermal-fluid aquifers in a Silver Peak hydrothermal system.1Licence not specifiedover 2 years ago
- Following the successful stimulation of Desert Peak target EGS well 27-15, a circulation test was initiated by injecting a conservative tracer (1,5-nds) in combination with a reactive tracer (7-amino-1,3-naphthalene disulfonate). The closest production well 74-21 was monitored over the subsequent several months.1Licence not specifiedover 2 years ago
- The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.1Licence not specifiedover 2 years ago
- This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.1Licence not specifiedover 2 years ago
- Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 Oct 2013 to 31 Oct 2013.1Licence not specifiedover 2 years ago
- This submission contains an update to the previous Exploration Gap Assessment funded in 2012, which identify high potential hydrothermal areas where critical data are needed (gap analysis on exploration data). The uploaded data are contained in two data files for each data category: A shape (SHP) file containing the grid, and a data file (CSV) containing the individual layers that intersected with the grid. This CSV can be joined with the map to retrieve a list of datasets that are available at any given site. A grid of the contiguous U.S. was created with 88,000 10-km by 10-km grid cells, and each cell was populated with the status of data availability corresponding to five data types: 1. well data 2. geologic maps 3. fault maps 4. geochemistry data 5. geophysical data1Licence not specifiedover 2 years ago
- Preliminary 1D seismic velocity model derived from ambient noise correlation. 28 Green's functions filtered between 4-10 Hz for Vp, Vs, and Qs were calculated. 1D model estimated for each path. The final model is a median of the individual models. Resolution is best for the top 1 km. Poorly constrained with increasing depth.1Licence not specifiedover 2 years ago
- Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 September 2013 to 30 September 2013.1Licence not specifiedover 2 years ago
- Adsorption isotherms for R245fa on metal organic heat carrier candidate MIL-1011Licence not specifiedover 2 years ago
- Sensor data proving the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant. Monthly data for Jan 2013 - October 7 20131Licence not specifiedover 2 years ago
- EGS field projects have not sustained production at rates greater than half of what is needed for economic viability. The primary limitation that makes commercial EGS infeasible is our current inability to cost-effectively create high-permeability reservoirs from impermeable, igneous rock within the 3,000-10,000 ft depth range. Our goal is to develop a novel fracturing fluid technology that maximizes reservoir permeability while reducing stimulation cost and environmental impact. Laboratory equipment development to advance laboratory characterization/monitoring is also a priority of this project to study and optimize the physicochemical properties of these fracturing fluids in a range of reservoir conditions. Barrier G is the primarily intended GTO barrier to be addressed as well as support addressing barriers D, E and I.1Licence not specifiedover 2 years ago
- Feasibility study completed to identify the economic and operations benefits of using a geothermal based heat pump to supplement domestic hot water production for a large county detention facility.1Licence not specifiedover 2 years ago
- Drawing showing the configuration of 667 bore holes drilled to depth of 300 ft. for the Lancaster County Adult Detention Facility geothermal heat pump system.1Licence not specifiedover 2 years ago
- This PowerPoint presentation describes the ground source heat pump system installed at the District Energy Corporation's thermal plant at the Lancaster County Adult Detention Facility in Lincoln, NE. The detention facility is a 270,000 sq. ft., 750 bed, secured facility.1Licence not specifiedover 2 years ago
- Due the high temperature and pressure conditions found in geothermal wells, tracer studies designed to elucidate properties of geothermal reservoirs are traditionally conducted by pulling liquid samples from the wellhead. These samples are then sent off for analysis in a fixed laboratory setting. Unfortunately by pulling the sample from the surface, information regarding the depth of the fractures generating the tracer flow is lost. Additionally, significant time is lost in sending the samples off for traditional chemical analysis. This presentation focuses on our efforts to develop downhole high temperature and pressure stable ion selective electrodes capable of measuring the concentration of tracers used in geothermal studies, along with pH, at various depths in the wellbore creating tracer concentration and pH depth profiles for use in geothermal reservoir analysis.1Licence not specifiedover 2 years ago
- Helium isotope and stable isotope data from the El Tatio, Tinginguirica, Chillan, and Tolhuaca geothermal systems, Chile. Data from this submission are discussed in: Dobson, P.F., Kennedy, B.M., Reich, M., Sanchez, P., and Morata, D. (2013) Effects of volcanism, crustal thickness, and large scale faulting on the He isotope signatures of geothermal systems in Chile. Proceedings, 38th Workshop on Geothermal Reservoir Engineering, Stanford University, Feb. 11-13, 2013 (linked below).1Licence not specifiedover 2 years ago
- AASG Wells Data for the EGS Test Site Planning and Analysis Task Temperature measurement data obtained from boreholes for the Association of American State Geologists (AASG) geothermal data project. Typically bottomhole temperatures are recorded from log headers, and this information is provided through a borehole temperature observation service for each state. Service includes header records, well logs, temperature measurements, and other information for each borehole. Information presented in Geothermal Prospector was derived from data aggregated from the borehole temperature observations for all states. For each observation, the given well location was recorded and the best available well identifier (name), temperature and depth were chosen. The "Well Name Source," "Temp. Type" and "Depth Type" attributes indicate the field used from the original service. This data was then cleaned and converted to consistent units. The accuracy of the observation's location, name, temperature or depth was note assessed beyond that originally provided by the service. - AASG bottom hole temperature datasets were downloaded from repository.usgin.org between the dates of May 16th and May 24th, 2013. - Datasets were cleaned to remove null and non-real entries, and data converted into consistent units across all datasets - Methodology for selecting best temperature and depth attributes from column headers in AASG BHT Data sets: Temperature: CorrectedTemperature - best MeasuredTemperature - next best Depth: DepthOfMeasurement - best TrueVerticalDepth - next best DrillerTotalDepth - last option Well Name/Identifier: APINo - best WellName - next best ObservationURI - last option The column headers are as follows: gid = internal unique ID src_state = the state from which the well was downloaded (note: the low temperature wells in Idaho are coded as "ID_LowTemp", while all other wells are simply the two character state abbreviation) source_url = the url for the source WFS service or Excel file temp_c = "best" temperature in Celsius temp_type = indicates whether temp_c comes from the corrected or measured temperature header column in the source document depth_m = "best" depth in meters depth_type = indicates whether depth_m comes from the measured, true vertical, or driller total depth header column in the source document well_name = "best" well name or ID name_src = indicates whether well_name came from apino, wellname, or observationuri header column in the source document lat_wgs84 = latitude in wgs84 lon_wgs84 = longitude in wgs84 state = state in which the point is located county = county in which the point is located1Licence not specifiedover 2 years ago
- FY13 annual report describing the calculations and results associated with the data and dissolution rate contained in "Chlorite Kinetic Dissolution Data and Rate" (linked below).1Licence not specifiedover 2 years ago
- The objective of this project is to detect and locate microearthquakes to aid in the characterization of reservoir fracture networks. Accurate identification and mapping of the large numbers of microearthquakes induced in EGS is one technique that provides diagnostic information when determining the location, orientation and length of underground crack systems for use in reservoir development and management applications. Conventional earthquake location techniques often are employed to locate microearthquakes. However, these techniques require labor-intensive picking of individual seismic phase onsets across a network of sensors. For this project we adapt the Matched Field Processing (MFP) technique to the elastic propagation problem in geothermal reservoirs to identify more and smaller events than traditional methods alone.1Licence not specifiedover 2 years ago
- Effective enhanced geothermal systems (EGS) require optimal fracture networks for efficient heat transfer between hot rock and fluid. Microseismic mapping is a key tool used to infer the subsurface fracture geometry. Traditional earthquake detection and location techniques are often employed to identify microearthquakes in geothermal regions. However, most commonly used algorithms may miss events if the seismic signal of an earthquake is small relative to the background noise level or if a microearthquake occurs within the coda of a larger event. Consequently, we have developed a set of algorithms that provide improved microearthquake detection. Our objective is to investigate the microseismicity at the DOE Newberry EGS site to better image the active regions of the underground fracture network during and immediately after the EGS stimulation. Detection of more microearthquakes during EGS stimulations will allow for better seismic delineation of the active regions of the underground fracture system. This improved knowledge of the reservoir network will improve our understanding of subsurface conditions, and allow improvement of the stimulation strategy that will optimize heat extraction and maximize economic return.1Licence not specifiedover 2 years ago
- The goal of this project was to create a template (and associated form) on OpenEI to solicit crowd-sourced information sharing about various geothermal resource areas around the world. Over the past two years, twelve case studies have been researched by NREL staff testing the usability and content model developed. The goal in FY14 is to encourage crowd-sourcing of information to populate information for more areas. The data can be found through the link below.1Licence not specifiedover 2 years ago
- This is an electronic database detailing different types of, various phases of, best practices for, and cost and time associated with geothermal exploration techniques. The groups of exploration techniques included in the database are Data and Modeling Techniques, Downhole Techniques, Drilling Techniques, Field Technologies, Geochemical Techniques, Geophysical Techniques, Lab Analysis Techniques, and Remote Sensing Techniques.1Licence not specifiedover 2 years ago
- We have calculated a chlorite dissolution rate equation at far from equilibrium conditions by combining new data (20 experiments at high temperature) with previously published data Smith et al. 2013 and Lowson et al. 2007. All rate data (from the 127 experiments) are tabulated in this data submission. More information on the calculation of the rate data can be found in our FY13 Annual support (Carroll LLNL, 2013) which has been submitted to the GDR and is linked below. The rate equation fills a data gap in geothermal kinetic data base and can be used directly to estimate the impact of chemical alteration on all geothermal processes. It is especially important for understanding the role of chemical alteration in the weakening for shear zones in EGS systems.1Licence not specifiedover 2 years ago
- This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.1Licence not specifiedover 2 years ago
- Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 8/1/13 to 8/31/13.1Licence not specifiedover 2 years ago
- Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 7/1/13 to 7/31/13.1Licence not specifiedover 2 years ago
- OM300 Geothermal Direction Drilling Navigation Tool - A prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling with: Accuracies of 0.1 degree Inclination and Tool Face, 0.5 degree Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduced cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process1Licence not specifiedover 2 years ago
- Mineralogical and lithological data from core samples taken at various geothermal wells in the Great Basin: Dixie Valley, Beowawe, Roosevelt, Mammoth, Steamboat Springs, Coso1Licence not specifiedover 2 years ago
- The purpose of this report is to investigate the effects of various parameters in a horizontal loop geothermal heat pump system. The obtained values include the temperature distribution over the entire system as well as the exiting temperature and bulk heat rate of the fluid. The results calculated in this report are set over a 6 month heating period.1Licence not specifiedover 2 years ago
- The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. These computer tools simulate the coupled performance of the ground loop and the heat pump. This report explains the programs in detail and explains their utility.1Licence not specifiedover 2 years ago
- This data submission includes simulation results for ground loop heat pump systems located in 6 different cities across the United States. The cities are Boston, MA, Dayton, OH, Omaha, NE, Orlando, FL, Sacramento, CA, and St. Paul, MN. These results were obtained from the two-dimensional geothermal computer code called GEO2D. GEO2D was written as part of this DOE funded grant. The results included in this submission for each of the 6 cities listed above are: 1) specific information on the building being heated or cooled by the ground loop geothermal system, 2) some extreme values for the building heating and cooling loads during the year, 3) the inputs required to carry out the simulation, 4) a plot of the hourly building heating and cooling loads throughout the year, 5) a plot of the fluid temperature exiting the ground loop for a 20 year period, 6) a plot of the heat exchange between the ground loop and the ground for a 20 year period, and 7) ground and ground loop temperature contour plots at different times of the year for the 20 year period.1Licence not specifiedover 2 years ago
- Stratigraphic reservoirs with high permeability and temperature at economically accessible depths are attractive for power generation because of their large areal extent (> 100 km2) compared to the fault controlled hydrothermal reservoirs (< 10 km2) found throughout much of the western US. A preliminary screening of the geothermal power potential of sedimentary basins in the U.S. assuming present day drilling costs, a levelized cost of electricity over 30 years of $10/Wh, and realistic reservoir permeabilities, indicates that basins with heat flows of more than about 80 mW/m2, reservoir temperatures of more than 175 degrees C, and a reservoir depth of less than 4 km are required. This puts the focus for future geothermal power generation on high heat flow regions of California (e.g. the Imperial Valley and regions adjacent to The Geysers), the Rio Grande rift system of New Mexico and Colorado (especially the Denver Basin), the Great Basin of the western U.S., and high heat flow parts of Hawaii and the Alaska volcanic arc. This submission includes a Stage Gate Report on "Novel Geothermal Development of Deep Sedimentary Systems in the United States" in addition to the following resources compiled into a single PDF: Fluid-Mineral and Reactional Path Calculations (Simmons, S.F. 2012) Summary of Coupled Fluid Geochemistry with Depth Analyses in the Great Basin and Adjoining Regions (Kirby, S.M. 2012) Summary of Compiled Permeability with Depth Measurements for Basin Fill, Igneous, Carbonate, and Siliciclastic Rocks in the Great Basin and Adjoining Regions (Kirby, S.M. 2012) Review of Permeability Characteristics in Drilled, Sediment-Hosted, Geothermal Systems (Anderson, T.C. 2012) Structural Geology of the Eastern Basin and Range; Structural Cross Sections Across Western Utah and Northeastern Nevada (Schelling, D.D. 2012) Stratigraphic Reservoirs in the Great Basin-The Bridge to Development of Enhanced Geothermal Systems in the U.S. (Allis et al. 2012) Presentation: Stratigraphic Reservoirs in the Great Basin-the Bridge to Development of Enhanced Geothermal Systems in the U.S. (Allis et al. 2012) Presentation: Novel Geothermal Development of Deep Sedimentary Systems in the United States (Moore, J. and R. Allis, 2012) The Potential for Basin-Centered Geothermal Resources in the Great Basin (Allis et al. 2011) Presentation: The Potential for Basin-Centered Geothermal Resources in the Great Basin (Allis et al. 2011) Geothermal Resources in Southwestern Utah: Gravity and Magnetotelluric Investigations (Hardwick, C. 2012) Geophysical Delineation of the Crater Bench, Utah, Geothermal System (Hardwick C.L. and D.S. Chapman, 2011) Geothermal Resources in the Black Rock Desert, Utah: MT and Gravity Surveys (Hardwick, C.L and D.S. Chapman, 2012) Simulation of Heat Exchange Processes and Thermal Evolution of Deep Sedimentary Resevoirs (2012) Performance of Air-Cooled Binary Power Plants: An Analysis using Pacificorp's Blundell plant near Milford, Utah (Allis, R. and G. Larsen, 2012) Chapter 4: Reservoir Implications of CO2 in Produced Fluids and as Co-Injected Fluid (2012) Developing Geothermal Resources beneath Hot Basins (stratigraphic reservoirs) Economic Constraints - draft notes for report (Spencer, T. and R. Allis 2012) Using Hydrogeologic Data to Evaluate Geothermal Potential in the Eastern Great Basin, Western U.S. (Heilweil et al. 2012) Subsidence in Sedimentary Basins due to Groundwater Withdrawal for Geothermal Energy Development (Lowe, M. 2012) Induced Seismicity [associated with deep sedimentary basin EGS development] (McPherson, B. 2012)1Licence not specifiedover 2 years ago
- This data submission includes simulation results for ground loop heat pump systems located in 6 different cities across the United States. The cities are Boston, MA, Dayton, OH, Omaha, NE, Orlando, FL, Sacramento, CA, and St. Paul, MN. These results were obtained from the two-dimensional geothermal computer code called GEO2D. GEO2D was written as part of this DOE funded grant. The results included in this submission for each of the 6 cities listed above are: 1) specific information on the building being heated or cooled by the ground loop geothermal system, 2) some extreme values for the building heating and cooling loads during the year, 3) the inputs required to carry out the simulation, 4) a plot of the hourly building heating and cooling loads throughout the year, 5) a plot of the fluid temperature exiting the ground loop for a 20 year period, 6) a plot of the heat exchange between the ground loop and the ground for a 20 year period, and 7) ground and ground loop temperature contour plots at different times of the year for the 20 year period.1Licence not specifiedover 2 years ago
- This submission includes fact and logical data models for geothermal data concerning wells, fields, power plants and related analyses at Raft River, ID. The fact model is available in VizioModeler (native), html, UML, ORM-Specific, pdf, and as an XML Spy Project. An entity-relationship diagram is also included. Models are derived from tables, figures and other content in the following reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx, Inc., August 2002. "Results from the Short-Term Well Testing Program at the Raft River Geothermal Field, Cassia County, Idaho," GeothermEx, Inc., October 2004.1Licence not specifiedover 2 years ago
- This file contains a zipped file that contains many files required to run GEO2D. GEO2D is a computer code for simulating ground source heat pump (GSHP) systems in two-dimensions. GEO2D performs a detailed finite difference simulation of the heat transfer occurring within the working fluid, the tube wall, the grout, and the ground. Both horizontal and vertical wells can be simulated with this program, but it should be noted that the vertical wall is modeled as a single tube. This program also models the heat pump in conjunction with the heat transfer occurring. GEO2D simulates the heat pump and ground loop as a system. Many results are produced by GEO2D as a function of time and position, such as heat transfer rates, temperatures and heat pump performance. On top of this information from an economic comparison between the geothermal system simulated and a comparable air heat pump systems or a comparable gas, oil or propane heating systems with a vapor compression air conditioner. The version of GEO2D in the attached file has been coupled to the DOE heating and cooling load software called ENERGYPLUS. This is a great convenience for the user because heating and cooling loads are an input to GEO2D. GEO2D is a user friendly program that uses a graphical user interface for inputs and outputs. These make entering data simple and they produce many plotted results that are easy to understand. In order to run GEO2D access to MATLAB is required. If this program is not available on your computer you can download the program MCRInstaller.exe, the 64 bit version, from the MATLAB website or from the Geothermal Data Repository. This is a free download which will enable you to run GEO2D.1Licence not specifiedover 2 years ago
- This file is the setup file for GEO3D, a computer program written by Jim Menart to simulate vertical wells in conjunction with a heat pump for ground source heat pump (GSHP) systems. This is a very detailed three-dimensional computer model. This program produces detailed heat transfer and temperature field information for a vertical GSHP system.1Licence not specifiedover 2 years ago
- Project Hotspot applies innovative approaches to geothermal exploration in the Snake River Volcanic Province. This report summarizes results from our Phase 1 data compilation.1Licence not specifiedover 2 years ago
- Project Hotspot drilled 3 slim hole exploratory wells in southern Idaho, each just under 2 km deep. These holes were designed to investigate thermal structure in three different settings within the Snake River Volcanic Province: (1) along the axial volcanic high of the central SRP, (2) along the margins of the central SRP, in an area of known thermal waters, and (3) in the western SRP graben. All holes were cored and logged geophysically. This paper describes the drilling and logging campaigns and their results. doi:10.2204/iodp.sd.15.06.20131Licence not specifiedover 2 years ago
- Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 6/1/13 to 6/30/131Licence not specifiedover 2 years ago
- This group of files includes 10 GETEM individual scenario files and 1 summary spreadsheet. Each spreadsheet contains final data (following the revisions made between summer of 2011 and spring of 2013).1Licence not specifiedover 2 years ago
- This file was a report submitted to GTO by Mark Paster, a consultant to the GETEM project, to outline the improvements that were made between summer 2011 and spring 2013. The report focuses on six areas of model improvement: (1) Site Specific Cost Variability; (2) Consistency with other EERE Programs' LCOE Approach and Methodology; (3) Risk Assessment/Cost; (4) Specific Data Gaps, Well Drilling Costs, Power Plant Costs; (5) Future LCOE Projections; and (6) Vetting by Industry.1Licence not specifiedover 2 years ago
- Chlorite dissolution kinetics were measured under far from equilibrium conditions using a mixed-flow reactor over temperatures of 100-275 degrees C at pH values of 3.0-5.7 in a background solution matrix of 0.05 m NaCl. Over this temperature range, magnesium was released congruently with respect to silica. The effect of variable pCO2 levels representative of engineered geothermal systems with CO2 as a heat-exchanging fluid (CO2-EGS) was explored by reacting chlorite with solutions containing a range of dissolved CO2 concentrations (0.1-0.5 M).1Licence not specifiedover 2 years ago
- Spreadsheets provides measured chlorite rate data from 100 to 300 degrees C at elevated CO2. Spreadsheet includes derived rate equation.1Licence not specifiedover 2 years ago
Title
Updated
